

June 2021 Webinars

US Army Corps of Engineers®

J Trans

DISCOVER | DEVELOP | DELIVER

UNCLASSIFIED

Model to Assess Species and Habitat Migration Due to Climate Change

Webinar Logistics:

- The webinar will begin at 11:00 am CDT.
- To access the audio select "Call Me" this is the preferred option to reduce feedback.
- If you are unable to connect via the "Call Me" feature,
 - Dial: 1-844-800-2712
 - Access: 199 565 7227#

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Webinar Instructions

✓ Start video ~

• All lines are muted.

Ø

Unmute ~

• Submit questions or comments in the Chat Box to "Everyone".

([↑]) Share

• The webinar is being recorded and will be shared following the meeting.

Record

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

<u>;</u>

 \mathcal{P}_{\equiv} Participants

 \bigcirc

Chat

• • •

UNCLASSIFIED

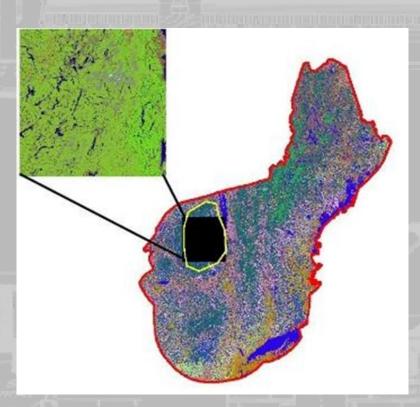
Presenters

Jacob Jung is a Research Wildlife Biologist in the Environmental Laboratory, Ecological Resources Branch at ERDC and he is part of the Wildlife Team. His background is focused on ornithology, habitat

management, and wildlife monitoring.

Christina Saltus is a Research Geographer in the Environmental laboratory, Environmental Systems Branch at ERDC and is part of the Geospatial Data Analysis Facility team.

Her background is in remote sensing, GIS, and geospatial tool development for the ecosystem research.


US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

UNCLASSIFIED

DATA ASSESSMENT OF SPECIES AND HABITAT MIGRATION DUE TO CLIMATE CHANGE

Jacob Jung and Christina Saltus Research Wildlife Biologist/Research Geographer 2015-ER-14 Date: 15 June, 2021

110-010 EAR Sol THE EARE BLUCKERADE CAN HEED FOR LICCHT & DRM

Multinon Griden

NOTE: TANKIEK DATE MOT SHOWNE

US Army Corps of Engineers ®

19.31232

CONTRACTOR CONTRACTOR

Project Purpose

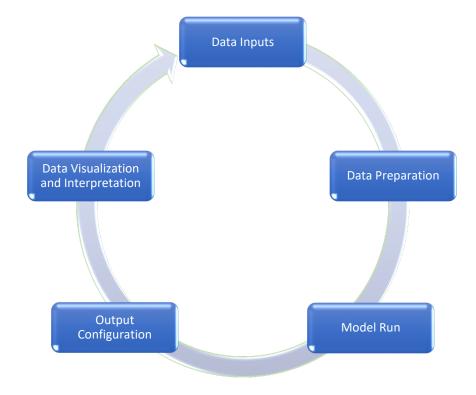
- SON: 2015-ER-14: Data Assessment of Species and Habitat Migration due to Climate Change
- Need: A large number of species/geographic areas are impacted by climate change, and a framework is needed to enable easy investigation and comparison of impacts across sites to allow for prioritization of restoration efforts
- Purpose: Provide a model framework and output for visualization in GIS software that allows USACE Districts to best manage for ecosystem restoration projects with ongoing changes as a result of climate change

 Benefit: Allow users to visually see how habitats are predicted to change in the future, thereby allowing for a more proactive management approach to ecosystem management. Rather than focusing simply on a wildlife species range shift or highlighting areas that are most vulnerable, this model visualizes the most likely habitats to occur within an area during future climate scenarios.

Model Methodology

- How will climate projections affect habitat shifts across the landscape and what are the most likely habitats that will colonize the impacted areas?
- The geographical framework was developed as a simple terrestrial vegetation prediction model
- The base layers of the framework include vegetation type and predicted climate data
- Dynamic habitat shifting simulation
- Multiple iterations are run to obtain a list of the most likely vegetation habitat to colonize the impacted habitats

Model Design



- Software and Coding Requirements:
 - Rust programming language (https://rustup.rs)
 - Rust Cargo
 - Python 3.7
- Hardware Requirements:
 - Windows 10 with minimum 32GB RAM
- Displays Results via GIS-based software
 - i.e. ArcGIS, QGIS
- Limitation
 - Applicable to regional or reservoir scale areas
 - Data and time intensive analysis
 - Currently requires programming knowledge
 - Requires significant storage space (e.g. external storage drive)

Model Workflow

Data Inputs

Historical and Predicted Climate Data

- -Hadley Centre Global Environment Model v2 Temperature and Precipitation (rcp85/r1i1p1)
- -Temporal Range: 2006-2099 (monthly)
- -Data Type: Raster
- -Sources: https://data.globalchange.gov/model/hadgem2 https://www.fs.usda.gov/ccrc/tool/climate-wizard

• Existing Vegetation Type (ie. USGS LANDFIRE)

- -Year: 2014
- -Data Type: Raster
- -Source: Available online https://landfire.gov/version_download.php#

Dispersal Distance

- -Data Type: Comma Delimited File (CSV)
- -Source: Derived from historical changes in vegetation type

Climate Envelope

- -Data Type: Comma Delimited File (CSV)
- -Source: Derived from regional climate data

Configuration File

config.toml - Notepad File Edit Format View Help input="./example/ecoregions.npz" distances="./example/distances.csv" envelopes="./example/envelopes.csv" output_directory="./example/output" dispersion_directory="./example/dispersion" temperature_directory="./example/temp" precipitation_directory="./example/temp" iters=100 years=1 seed=10

Model

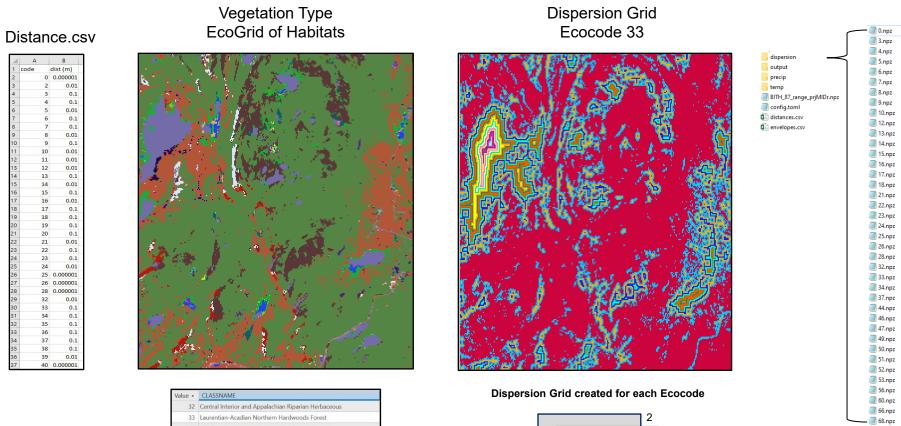
Directory		
 dispersion output precip temp BITH_87_range_prjMIDr.npz config.toml distances.csv evelopes.csv 	precip 0.npz 1.npz 2.npz 3.npz	temp

Data Preparation

- Standardize data layers spatial reference and spatial resolution
- Clip data to your Area of Interest
 - Regional Climate Envelope (ie. Northeast)
 - Analysis Area (ie. Reservoir)
- Create Climate Envelope (1950-2005)
 - Avg Min and Max Temperature
 - Avg Min and Max Precipitation
- Calculate July Min and Max Precipitation and Temperature range (2006-2099)
- Python scripts output compressed numpy format (.npz)

Climate	Envelo	ре
---------	--------	----

1	A	В	С	D	E
1	code	temp_mx	temp_mn	precip_mx	precip_mn
2	0	29.71198654	-25.11110687	3.652477026	2.735599041
3	2	33.33710861	-14.00466347	3.600230455	3.137039185
4	3	33.33710861	-23.48329163	3.600230455	2.476728201
5	4	33.33710861	-22.63945007	3.600230455	2.476728201
6	5	33.33710861	-25.11110687	3.652477026	2.476728201
7	6	33.33710861	-23.48329163	3.600230455	2.476728201
8	7	32.83883667	-23.48329163	3.600230455	2.476728201
9	8	32.77629852	-24.93285942	3.652477026	2.476728201
10	9	33.33710861	-23.48329163	3.600230455	2.476728201
11	10	33.33710861	-23.48329163	3.600230455	2.476728201
12	11	32.49179077	-15.14382076	3.516705036	2.744009256


Model		
Directory	_	
dispersion	precip	temp
output	🥘 0.npz	🥘 0.npz
	1.npz	1.npz
precip	2.npz	2.npz
temp		
BITH_87_range_prjMIDr.npz	J.npz	3.npz
Config.toml		
🕼 distances.csv		
envelopes.csv		

Model - Dispersion Grids

 Source
 CLASSNAME

 32
 Central Interior and Appalachian Riparian Herbaceous

 33
 Laurentian-Acadian Northern Hardwoods Forest

 34
 Northeastern Interior Dry-Mesic Oak Forest

 35
 Southern Pledmont Mesic Forest

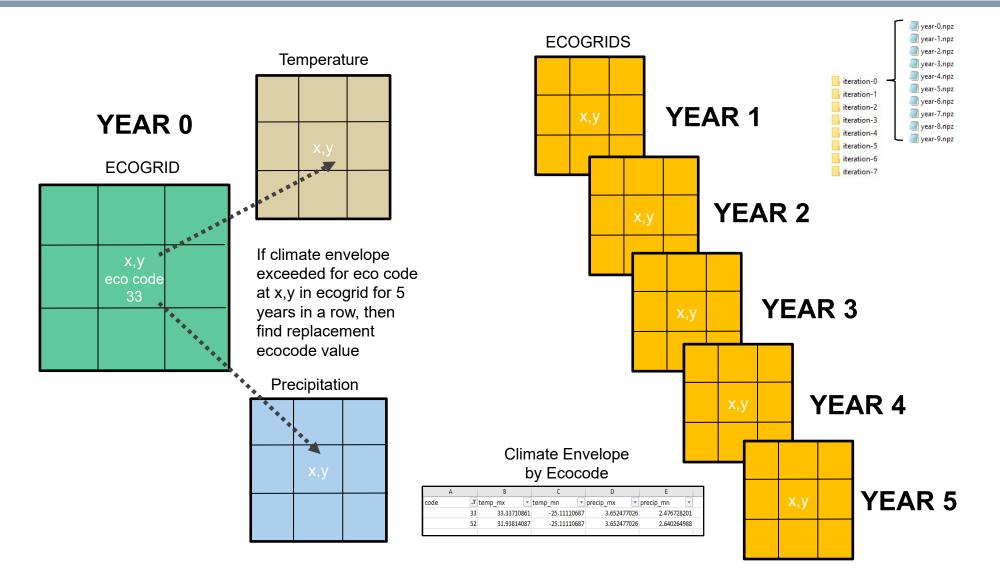
 36
 Southern and Central Appalachian Cove Forest

 37
 Central Interior and Appalachian Riparian Shrubland

 38
 Northern Atlantic Coastal Plain Hardwood Forest

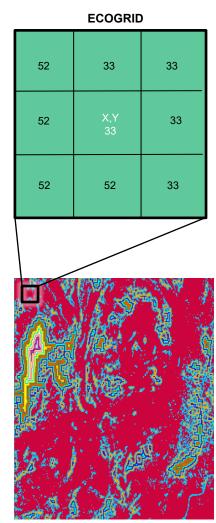
 39
 Gulf and Atlantic Coastal Plain Hoodplain Herbaceous

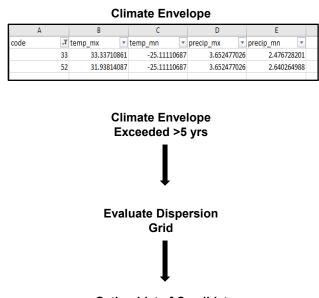
 40
 Appalachian Shale Barens


 41
 Southern Atlantic Coastal Plain Bioc Hardwood Forest

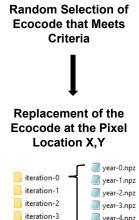
 42
 Boreal Jack Pine-Black Spruce Forest

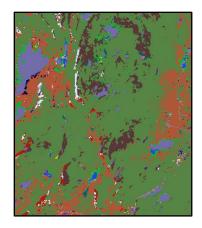
Model – Climate Evaluation





Model – Habitat Switching

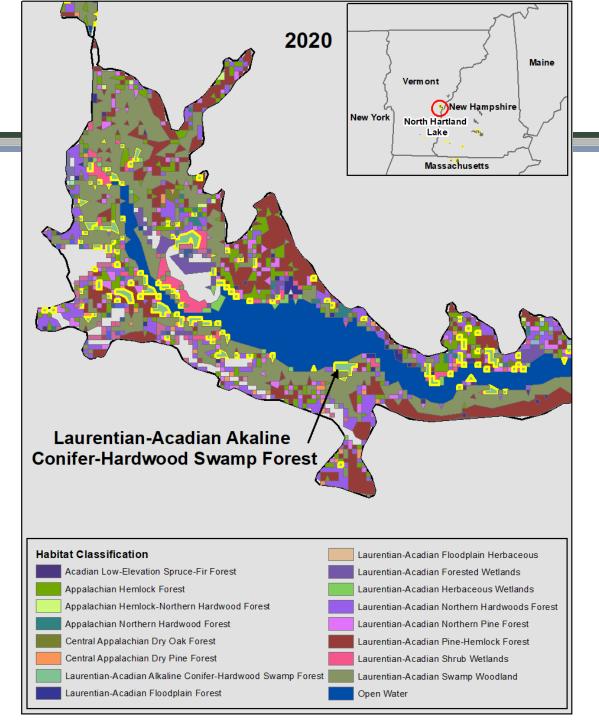

ECOCODE 33 Dispersion Grid


Gather List of Candidate Ecocodes [14, 45, 72, 34, 25, 61...]

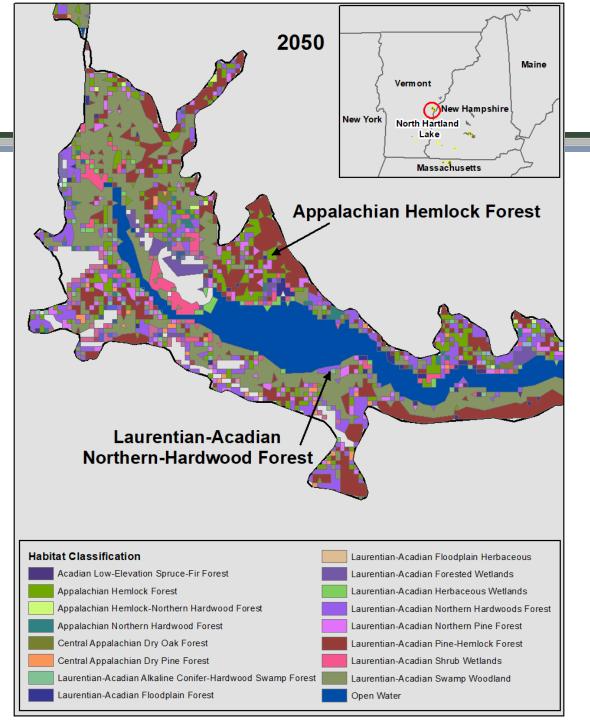
Compare Candidate Ecocodes to Climate Envelope

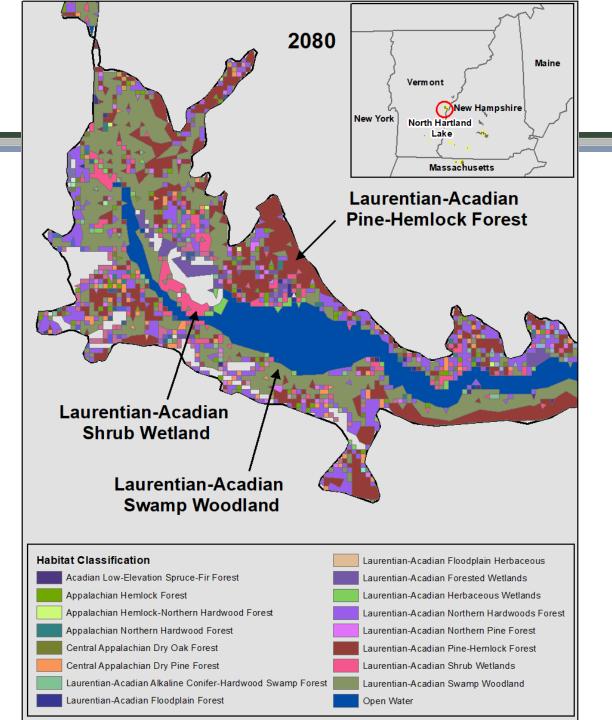
Α		В		С		D		E	
code	Τ.,	temp_mx		temp_mn	۳	precip_mx	٣	precip_mn	•
	33	33.3371	0861	-25.111106	587	3.6524770	26	2.47672820	1
	52	31.9381	4087	-25.111106	587	3.6524770	26	2.64026498	8

📃 year-3.npz
🥘 year-4.npz
🥘 year-5.npz
🥘 year-6.npz
🔳 year-7.npz
🥘 year-8.npz
📃 year-9.npz



- Ecocode Grid output conversion to a tif file format for display in GIS software application
- Majority overlay analysis (2020, 2050, 2080, 2100)
- Summarizing habitats by area of interest
- year-0.npz iteration-0 vear-1.npz iteration-1 🖉 year-2.npz iteration-2 year-3.npz iteration-3 year-4.npz iteration-4 year-5.npz iteration-5 year-6.npz iteration-6 year-7.npz iteration-7 year-8.npz year-9.npz

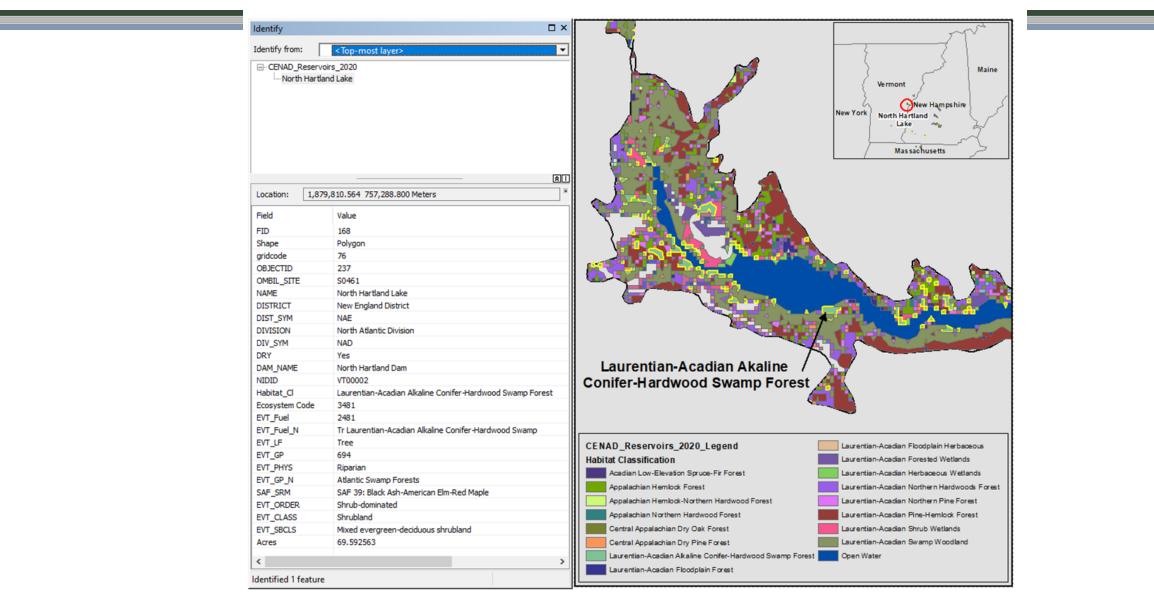




Percentage of Predicted Habitat Shifts: Present (2020) to 2100

			Year		
Current Habitat (2020)	Predicted Habitat in Future	2050	2080	2100	
Laurentian-Acadian					
Alkaline Conifer-					
Hardwood Swamp					
Forest					
	Acadian Low-Elevation Spruce-Fir Forest	1.1			
	Appalachian Hemlock Forest	1.6	1.7	1.7	
	Central Appalachian Dry Oak Forest	1.6	1.7	1.7	
	Central Appalachian Dry Pine Forest	3.2	3.3	3.3	
	Central Interior and Appalachian Swamp Forest	7.4	7.6	7.6	
	Eastern Cool Temperate Developed Ruderal Deciduous Forest	1.8	1.8	1.8	
	Eastern Cool Temperate Developed Ruderal Shrubland	6.6	7.1	7.1	
	Eastern Cool Temperate Undeveloped Ruderal Shrubland	1.6	1.6	1.6	
	Eastern Cool Temperate Urban Shrubland	1.0	1.1	1.1	
	Laurentian-Acadian Forested Wetlands	6.9	6.9	6.9	
	Laurentian-Acadian Northern Hardwoods Forest	11.3	12.6	12.6	
	Laurentian-Acadian Northern Pine Forest	1.0			
	Laurentian-Acadian Pine-Hemlock Forest	4.9	5.6	5.6	
	Laurentian-Acadian Shrub Wetlands	5.3	5.6	5.6	
	Laurentian-Acadian Swamp Shrubland	2.4			
	Laurentian-Acadian Swamp Woodland	33.5	34.9	34.9	

Percentage of Predicted Habitat Shifts: Present (2020) to 2100



Current Habitat (2020)	Predicted Habitat in Future	2050	2080	2100
Appalachian Hemlock				
Forest				
	Appalachian Hemlock Forest	56.9	57.0	57.0
	Central Appalachian Dry Pine Forest	8.0	9.0	9.0
	Central Interior and Appalachian Swamp Forest	2.2	2.3	2.3
	Eastern Cool Temperate Developed Ruderal Shrubland	1.1	1.2	1.2
	Laurentian-Acadian Northern Hardwoods Forest	8.1	9.0	9.0
	Laurentian-Acadian Northern Pine Forest	3.3		
	Laurentian-Acadian Pine-Hemlock Forest	9.1	10.2	10.2
	Laurentian-Acadian Swamp Woodland	2.1	2.5	2.5

Identify Habitats of Interest for a Project Area

IRRP

Supporting Resources

https://landfire.
 gov/documents/
 LF GAPMapUnitD
 escriptions.pdf

LANDFIRE/GAP Land Cover Map Unit Descriptions

Modified by GAP/USGS to incorporate descriptions for all LANDFIRE Map Units, and the 2015 NVC Hierarchy Jan. 4, 2016

> Based on NatureServe Ecological Systems Version 1.13 Data Date: Oct. 23, 2009

System Name	Page
3001: Inter-Mountain Basins Sparsely Vegetated Systems	1
3002: Mediterranean California Sparsely Vegetated Systems	5
3003: North Pacific Sparsely Vegetated Systems	7
8004: North American Warm Desert Sparsely Vegetated Systems	9
3006: Rocky Mountain Alpine/Montane Sparsely Vegetated Systems	11
8007: Western Great Plains Sparsely Vegetated Systems	13
3008: North Pacific Oak Woodland	15
8009: Northwestern Great Plains Aspen Forest and Parkland	17
8011: Rocky Mountain Aspen Forest and Woodland	19
8012: Rocky Mountain Bigtooth Maple Ravine Woodland	21
8013: Western Great Plains Dry Bur Oak Forest and Woodland	23
3014: Central and Southern California Mixed Evergreen Woodland	25
8015: California Coastal Redwood Forest	27
8016: Colorado Plateau Pinyon-Juniper Woodland	29
3017: Columbia Plateau Western Juniper Woodland and Savanna	31

Landfire Ecosystem Descriptions

3481: Laurentian-Acadian Alkaline Conifer-Hardwood Swamp Forest

Match Confidence: Good Match

Suggested Match: Laurentian-Acadian Alkaline Conifer-Hardwood Swamp

Codes: ESLF: 9345 ESP: 1481

EVT_fuel: 2481 NatureServe ld: CES201.575

BioGeographical Division : Laurentian-Acadian

NVC MacroGroup: M504 Northern Flooded & Swamp Forest

NVC Group: G046 Laurentian-Acadian-Allegheny Alkaline Swamp

1997 Standard

FGDC Division : Vegetated FGDC Order : Tree-dominated FGDC Class : Closed tree canopy FGDC Subclass : Mixed evergreen-deciduous closed tree canopy

2015 Standard

NVCS Class:	1 Forest & Woodland
NVCS Subclass:	1.B Temperate & Boreal Forest & Woodland
NVCS Formation:	1.B.3 Temperate Flooded & Swamp Forest
NVCS Division:	1.B.3.Na Eastern North American & Great Plains Flooded & Swamp Forest

- Summary: These forested wetlands are found across northern New England and the upper Midwest and eastern to south-central Canada in basins where higher pH and/or nutrient levels are associated with a rich flora. The substrate is typically mineral soil, but there may be some peat; often, there is an organic epipedon over mineral soil. *Thuja occidentalis* is a diagnostic canopy species and may dominate the canopy or be mixed with other conifers or with deciduous trees, most commonly *Acer rubrum or Fraxinus nigra*. Some examples can be almost entirely deciduous and dominated by *Fraxinus nigra*. Small open fenny areas may occur within the wetland. Seepage may influence parts of the wetland, but the hydrology is dominated by the basin setting.
- Range: Scattered locations from New England and adjacent Canada west to the Great Lakes and northern Minnesota.
- States: CT, ME, MI, MN, NY, VT, WI
- Map Zones: 41:C, 50:C, 51:C, 63:C, 64:C, 65:C, 66:C
- Similar: Laurentian-Acadian Alkaline Fen (CES201.585), North-Central Interior and Appalachian Rich Swamp (CES202.605), Northern Appalachian-Acadian Conifer-Hardwood Acidic Swamp (CES201.574)

3302: Laurentian-Acadian Northern Hardwoods Forest

Match Confidence: Direct Match Suggested Match: Laurentian-Acadian Northern Hardwood Forest

Codes: ESLF: 4108 ESP: 1302

NatureServe Id: CES201.564

EVT fuel: 2302

BioGeographical Division : Laurentian-Acadian

NVC MacroGroup: M014 Laurentian & Acadian Northern Hardwood - Conifer Mesic Forest

NVC Group: G743 Laurentian & Acadian Hardwood Forest

1997 Standard

FGDC Division : Vegetated FGDC Order : Tree-dominated FGDC Class : Closed tree canopy FGDC Subclass : Deciduous closed tree canopy

2015 Standard

 NVCS Class:
 1 Forest & Woodland

 NVCS Subclass:
 1.B Temperate & Boreal Forest & Woodland

 NVCS Formation:
 1.B.2 Cool Temperate Forest & Woodland

 NVCS Division:
 1.B.2.Na Eastern North American & Great Plains Cool Temperate Forest & Woodland

- Summary: These northern hardwood forests range across New England and adjacent Canada, south to northern Pennsylvania and west to Minnesota. They occur in various dry-mesic to wet-mesic settings at low to moderate elevations (generally<610 m [2000 feet]) throughout the Laurentian-Acadian Division. > Acer saccharum, Betula alleghaniensis, and Fagus grandifolia are the dominant trees (the latter only east of northern Wisconsin). Tsuga canadensis or, in the Northeast, Picea rubens are common minor canopy associates. Ostrya virginiana is frequent but not dominant. Oak is a minor component and absent from northern regions. Successional stands may be dominated by Populus tremuloides, Betula papyrifera, Acer rubrum, Fraxinus americana, Prunus serotina, sometimes with scattered Pinus strobus. Soils range from moderately nutrient-poor to quite enriched, with associated shifts in the herb flora. This system can include large expanses of rich forest in areas of granitic (or similar) bedrock or acidic till. Blowdowns or snow and ice loading, with subsequent gap regeneration, are the most frequent form of natural disturbance.
- Range: This system occurs in northern New England and northern New York west across the upper Great Lakes to northern Minnesota, and adjacent Canada; occasional southwards.

States: MA, ME, MI, MN, NB, NH, NS, NY, ON, PA, QC, VT, WI

Map Zones: 41:C, 50:C, 51:C, 63:C, 64:C, 65:C, 66:C

Similar: Acadian Low-Elevation Spruce-Fir-Hardwood Forest (CES201.565), Appalachian (Hemlock)-Northern Hardwood Forest (CES202.593), Laurentian-Acadian Pine-Hemlock-Hardwood Forest (CES201.563), North-Central Interior Beech-Maple Forest (CES202.693)

NatureServe Database

NT_GLO -	ELCODI -	GLOBAL_NAME	T SPECIES *	SCIENTIFIC_NAME *	G_RANK
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	159330	Acer rubrum	G5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	125218	Caloplaca parvula	G1G2
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	140261	Cornus sericea	G5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	144288	Cypripedium parviflorum	G5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	160163	Fraxinus nigra	GS
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	126421	Frullania selwyniana	G2G3
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	133967	Isoetes lacustris	GS
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	152910	Larix laricina	G5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	140538	Mimulus glabratus var. michiganensis	GST1
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	136481	Poa paludigena	G3
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	145794	Polemonium occidentale ssp. lacustre	G57T2Q
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	138983	Rhamnus alnifolia	G5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	129023	Sarracenia purpurea ssp. gibbosa	G5T5
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	145680	Thuja occidentalis	GS
723030	CES201.575	Laurentian-Acadian Alkaline Conifer-Hardwood Swamp	160510	Tiarella cordifolia	G5

STRATUM_DES *	LIFEFORM_DESC *	DOM *	DIAG *	CONS -	EXOTIC *	INVASIVE *
Tree canopy	Broad-leaved deciduous tree	Y.	No	N	N	N
Nonvascular	Lichen	N	No	N	N	N
Shrub/sapling (tal	Broad-leaved deciduous shrub	N	Yes	N	N	N
Herb (field)	Flowering forb	N	Yes	N	N	N
Tree canopy	Broad-leaved deciduous tree	Y	No	N	N	N
Nonvascular	Liverwort/hornwort	N	No	N	N	N
Herb (field)	Fern (Spore-bearing forb)	N	No	N	N	N
Tree canopy	Needle-leaved tree	Y.	No	N	N	N
Herb (field)	Flowering forb	N	No	N	N	N
Herb (field)	Graminoid	N	No	N	N	N
Herb (field)	Flowering forb	N	No	N	N	N
Shrub/sapling (tal	Broad-leaved deciduous shrub	N	Yes	N	N	N
Herb (field)	Flowering forb	N	No	N	N	N
Tree canopy	Needle-leaved tree	Y	No	N	N	N
Herb (field)	Flowering forb	N	Yes	N	N	N

NatureServe Explorer

View on		Upper					NatureServe	
NatureServe	Ecosystem	Level	Classification			NatureServe	Rounded	
Explorer 💌	Туре 💌	Cod -	Code 💌	Common Name	Scientific Name 👻	Global Ran 👻	Global Ran -	Distribution 💌
https://explorer.n								
atureserve.org/Ta								
xon/ELEMENT_GL								
OBAL 2.723040/La								
urentian-								
Acadian Northern				in the second second second	in an in the day the strength one			Canada: N8, N5, ON, QC
	TERRESTRIAL_ECOL		000000 E.C.4	Laurentian-Acadian Northern	Laurentian-Acadian Northern	Ch10	C110	United States: MA, ME,
-	OGICAL_SYSTEM	64	CES201.564	Hardwood Forest	Hardwood Forest	GNR	GNR	MI, MN, NH, NY, VT, WI
https://explorer.n								
atureserve.org/Ta xon/ELEMENT_GL								
OBAL 2.723030/La								
urentian-								
Acadian Alkaline								
Conifer-								Canada: ON
	TERRESTRIAL_ECOL	CE\$201.5		Laurentian-Acadian Alkaline Conifer-	Laurentian-Acadian Alkaline Conifer-			United States: CT, ME,
2	OGICAL_SYSTEM	75	CE\$201.575	Hardwood Swamp	Hardwood Swamp	GNR	GNR	MI, MN, NH, NY, VT, WI

- <u>https://explorer.natureserve.org/</u>
- Search for Ecosystem Types or Individual Species (Flora or Fauna)

NatureServe Explorer

	NatureServe Explorer		Search	About the Data	About Us	Help	Adopt a Sp	
	Terrestrial Ecological S	System: Laurentian-A	cadian Northern Hardwo	ood Forest				
	Other Species of Is	nterest						
	At-Risk Species Rep Scientific Name		gical System: 1001 Name	NatureServe Global Status		USESA Status		
	Mimulus glabratus v michiganensis	var. Michi	gan Monkeyflower	G5T1		Endangered		•
	Myotis sodalis	Indian	a Myotis	G2		Endangered		
	Nicrophorus americ	anus Ameri	can Burying Beetle	G3		Threatened; Experimental population, non-essential		
	Ophiogomphus smi	thi Sioux	Snaketail	G2G3				
	Rubus variispinus	Vicks	burg Blackberry	G1?Q				*
	Animal Species Rep		NatureServe	107.04.0			-	
	Scientific Name Bonasa umbellus	Common Name Ruffed Grouse	Global Status G5	USESA Status	Character	ristic	Exotic	*
	Catinella gelida	Frigid Ambersnai					No	
	Erora laeta	Early Hairstreak	G2G3				No	
ontents	Myodes gapperi	Southern Red- backed Vole	G5				No	Activate Wi Go to Settings

Summary

- How models can be used to inform decisions for USACE reservoir land managers and other USACE projects.
- Models that display where habitats that include threatened, endangered and at-risk species are currently located, and to what extent these range shifts will occur, will be of great importance towards future project planning and resource management
- While this serves as a tool to inform how habitats will potentially shift in future, it is important to take other local site conditions into account when making management decisions.

UNCLASSIFIED

Questions & Answers

Please post any questions to the "CHAT".

Coming up next!

June 29th 12:00pm CDT

Topic: Monitoring Ecological Restoration [with Imagery Tools (MERIT)

Dr. Kristofer Lasko

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Photo Credit: I.lung