

US Army Corps of Engineers

Conceptualizing the Downstream Ecological Effects of Reservoir Sediment Release

Presenter: Darixa D. Hernandez-Abrams Sept 25, 2024

EL 379.00

Report Authors:

Darixa Hernandez-Abrams MSc, PhD student- Research Ecologist

 Interests: ecosystem restoration, ecological modeling, evaluating environmental effects of USACE projects

Glorimar Franqui-Rivera, MSc, PhD student- ERDC-UPR intern
Interests: marine sciences, biodiversity, ecological dynamics

Dr. Kyle McKay, MSc, PhD – Research Civil Engineer

Interests: effects of water source mgmt., ecosystem restoration, modeling

Dr. Liya Abera, PhD – Civil Engineer ERDC-ORISE fellow

Interests: Nature Based Solutions, stormwater engineering, life-cycle cost

Other members of the ERDC-EL project Team: Dr. Aubrey Harris co-lead phase III, Samantha Wiest (hydraulic and sediment transport modeling), Susan Bailey

Report content

Chap 1 Introduction

- Hydrological and sediment regimes
- Gen effects of reservoirs as sediment traps
- Need for sustainable practices
- Objectives and approach

Chap 2 Geomorphic Effects

- Sec CWA 404
- Effects on ecosystem habitat
- CEMs

Report content (cont.)

Chap 3 Water Quality Effects

- CWA Sec 401
- Effects on WQ and impacts on ecosystem
- Conceptual ecological model

Chap 4 Aquatic Organism Effects

- ESA Sec 7 and 9
- Effects of WQ and fluvial geomorphology
- CEM

Chap 5 Gaps and Recommendation

Other Topics (not in report)

Broad Look at Case Study: Water Injection Dredging

- Monitoring
- Modeling
- Future directions

Acknowledgements

References

Q&A

Hydrological and sediment regimes

Natural sediment regime river sediment dynamics before anthropogenic alteration

Natural sediment regime riverine natural flow variations over time

Modified by Blum et al. 2000 from Lane's Balance Equation (1955)

Regime – magnitude, timing duration, frequency, rate of change

Hydrological and sediment regimes

Sedimentation effects in reservoirs

Morris (2020)

Paonia Reservoir, Colorado (Randle et al. 2019)

Report objectives and approach

Objectives

- Research state of science
- Provide information to researchers and practitioners from a regulatory lens
- Identify future research priorities

Approach

- Literature review on existing studies of fluvial geomorphological effects on ecosystems
- Workshops and meetings- members from National Reservoir Sedimentation and Sustainability Team and other experts on needs to improve state of practice
- Linked to regulatory needs
- Developed conceptual models reflecting geomorphic, water quality, and aquatic organism effects (following Fischenich 2008)

GEOMORPHIC EFFECTS

Section 404 of the Clean Water Act

- CWA meant to protect and ecosystem integrity
- Sect 404 requires a permit for discharges of dredged or fill material into the waters of the United States, including wetlands
- Regulates activities that may result in sediment altering aquatic ecosystem integrity (e.g., excessive sediment released into water)
- Information needed for least damaging practice alternative analysis, avoidance, minimization, mitigation plan, monitoring, etc.

GEOMORPHIC EFFECTS

Cases	Geomorphological Changes							
	Terrace	Riffle	Pool	Bed level	Ch Width	annel Fo Depth	orm Grain size	Water velocity (after form changes)
Equal Q L <k< th=""><th>Formation</th><th>Erosion</th><th>Erosion</th><th>D</th><th>+/-</th><th>+</th><th>+/-</th><th>+/-</th></k<>	Formation	Erosion	Erosion	D	+/-	+	+/-	+/-
Decreased Q L <k< th=""><th>Formation</th><th>Erosion</th><th>Erosion OR deposition</th><th>0/D</th><th>+/-</th><th>+/-</th><th>+/-</th><th>+/-</th></k<>	Formation	Erosion	Erosion OR deposition	0/D	+/-	+/-	+/-	+/-
Increased Q L <k< th=""><th>Disintegration</th><th>Erosion</th><th>Erosion</th><th>D</th><th>+/-</th><th>+/-</th><th>+/-</th><th>+/-</th></k<>	Disintegration	Erosion	Erosion	D	+/-	+/-	+/-	+/-
Increased Q L>K	Formation	Deposition	Deposition	A	+/-	+/-	+/-	+/-
Decreased Q L>K	Formation	Deposition	Deposition	A	+/-	+/-	+/-	+/-
Equal Q L=K	0	0	0	0	0	0	0	0
Decrease Q L=K	0	Erosion	Deposition	0	-	-	-	+/-
Increase Q L=K	Disintegration	Deposition	Erosion	0	+	+	+	+/-

Table adapted from Brandt (2000) and Bledsoe (personal communications)

GEOMORPHIC EFFECTS

Cases	Geomorphological Changes							
	Terrace	Riffle	Pool	Bed level	Ch Width	annel Fo Depth	orm Grain size	Water velocity (after form changes)
Increased Q L <k< th=""><td>Disintegration</td><td>Erosion</td><td>Erosion</td><td>D</td><td>+/-</td><td>+/-</td><td>+/-</td><td>+/-</td></k<>	Disintegration	Erosion	Erosion	D	+/-	+/-	+/-	+/-
Increased Q L>K	Formation	Deposition	Deposition	A	+/-	+/-	+/-	+/-
				- 	-			

GEOMORPHIC EFFECTS

ERDC

GEOMORPHIC EFFECTS

WATER QUALITY EFFECTS

Clean Water Act Section 401

- Requires permits for pollutant discharge into navigable waters to certify compliance with water quality standards.
- States, tribes, or the EPA issue these certifications to ensure the discharge meets local water quality requirements.
- Certification also includes monitoring, limits, and other conditions to ensure compliance with the CWA and local laws.

WATER QUALITY EFFECTS

EPA Water Quality Standards

Ref. Ref. (Effective July 29, 2020) Surface water classifications, designated uses, quality criteria and policies and procedures for the waters of the State of New Jersey

WATER QUALITY EFFECTS

AQUATIC ORGANISM EFFECTS

Endangered Species Act

- Protects endangered species and their habitats, requiring consultation with the U.S. Fish and Wildlife Service (USFWS) or National Marine Fisheries Service (NMFS)
- **ESA Section 7** mandates that federal agencies ensure their actions do not jeopardize endangered ٠ species or habitats
 - requires a <u>multi-step consultation process</u> with USFWS and NMFS, potentially including a **Biological Assessment and formal consultation**
- ESA Section 10 governs non-federal activities that may affect endangered species
 - requires an Incidental Take Permit and a Habitat Conservation Plan (HCP) to minimize impacts on species and habitats
- Information and monitoring guidance needed for sustainable reservoir sediment management practices

GAPS IN STATE OF SCIENCE/PRACTICE

• No direct regulatory guidance on releases

• Long-Term Impact Gaps: Insufficient data on long-term effects and species recovery after sediment disturbances.

• **Compound Effects:** Insufficient information on compound effects (e.g., climate change, reservoirs in series.

Lack of case studies: Not many documented studies reservoir releases from different management alternatives, reservoir design, or geographic variability
 Focus on Salmonids: Most research centers on salmonids, with limited studies on other endangered aquatic species or other aquatic organisms.

• Lack of Species-Specific Data: Few studies address sediment effects on species adapted to low-visual or sediment-rich environments.

• Unclear Sediment Release Thresholds: The optimal sediment release volumes that balance ecological benefits and species safety are not well defined.

- Modify regulatory guidance
- Develop short and long-term monitoring programs
- Diversify sediment release case studies
- Develop comprehensive tools for management and decision-making
- Expand research beyond salmonids
- Species-specific research
- Define optimal sediment release volumes
- Research on compound effects

CHALLENGES AND OPPORTUNITIES

	Impact?	Benefit?			
Added sediment	A "pollutant"	Crucial to riverine function			
Turbidity	May cause gill abrasion	Helps avoid predation			
Deposition	Affects spawning and food sources	Floodplain reconnection, sand bar habitat creation			

DEPENDS!

Tuttle Creek

- 47.9% of its storage capacity is lost due to sedimentation
- Expected to fill within 40 years
- Incised channels downstream
- Prairie stream species T&E

WID Pilot to start Spring 2025

• First time in the world

Figure: Rowley and Gido 2024 SFS Conference

BRIDGING DISCIPLINES

2D Hydraulic and sediment transport models at confluence (Harris and Wiest)

> PCA fish diets Abundance vs. Vel (Rowley and Gido)

UNCLASSIFIED

0.6

0.4

0.6

0.0 0.2 0.4

Average velocity

0.6 0.0 0.2

0.0

0.2

0.4

PUBLISHED WORK

- Wiest, S.R., Harris, A.E., and Hernandez, D.D. (2024). Hydraulic model (HEC-RAS) of downstream of Tuttle Creek Reservoir at the confluence of the Big Blue River and the Kansas River near Manhattan, KS. Dryad. <u>https://datadryad.org/stash/dataset/doi:10.5061/dryad.k3j9kd5gr</u>
- Harris, A.E., and Hernandez-Abrams, D.D. (2024). Monitoring Geomorphology to Inform Ecological Outcomes Downstream of Reservoirs Impacted by Sediment Release. Engineer Research and Development Center Vicksburg MS Environmental Lab. <u>https://hdl.handle.net/11681/48470</u>
- Hernandez-Abrams, D.D., Bailey, S.E., and McKay, S.K. (2022). Environmental Effects of Sediment Release from Dams: Conceptual Model and Literature Review for the Kansas River Basin. Technical note created by Engineer Research and Development Center Environmental Lab, Vicksburg, MS. <u>https://hdl.handle.net/11681/44880</u>

Research funding:

- Ecosystem Management and Restoration Research Program (EMRRP)
- USACE-TNC Sustainable Rivers Program

Collaborators:

- Water Research Integrating Socio-ecological and Engineered Systems (WRISES) Team
- ERDC: Susan Bailey, Travis Dahl, Kyle Gordon
- Kansas State University: (Dr. Keith Gido/ Logan Rowley, Gido Lab
- Kansas City District: Dr. John Shelley, Laura Totten, Marvin Boyer, K. Bingham, M. Mansfield, J. Albrecht, D. Wansing
- UGA River Basin Center
- Feedback: Drs. Rollin Hotchkiss, Matthias Kondolf, Gregory Morris, Eric Sommerville, Lisa Gordon, Kyle Gordon, Mary Freeman, Seth Wenger, Amy Rosemond, Desiree Tullos...

FUTURE DIRECTIONS

Linking hydraulics with ecology

- Mesohabitat classes from hydraulic model results.
- Diversity and type of mesohabitat compared with fish surveys (Rowley and Gido, KSU).
- Forecast change in mesohabitat availability and implications on aquatic species.

Model technical report with ecological implications (Harris et al.)

Geospatial analysis journal paper (Cordero and Harris)