COMPREHENSIVE MARSH MODEL DEMONSTRATION: SEVEN MILE ISLAND INNOVATION LABORATORY, NEW JERSEY

Thomas Huff, Ph.D. Emily Russ, Ph.D. Todd Swannack, Ph.D.

EMRRP Webinar Series February 12, 2024

US Army Corps U.S. ARMY of Engineers

USACE NEEDS INTEGRATED MARSH MODELS

- Current modeling systems do not provide the level of precision and detail that USACE needs for restoration planning and engineering operations
- Integrated modeling systems capture feedbacks between physical and ecological processes
- We developed an integrated modeling framework for coupling marsh models of different scales (Comprehensive "Comp" marsh model)

UNCI ASSIFIFD

PLANNING MODELS FOR MARSH RESILIENCE

- Marshes important for flood risk management, environmental, and social benefits
- Marshes vulnerable to natural (e.g., SLR) and anthropogenic threats • (e.g., development)
- Planning future changes and marsh dynamics is challenging because of interacting components
- Need integrated modeling framework to capture complex systems

MARSH = HYDRO+MORPHO+ECO DYNAMICS

SEVEN-MILE ISLAND INNOVATION LABORATORY

Collaborative initiative to develop innovative BUDM applications for marsh restoration in NJ

- Model developed using the python based Landlab Toolkit developed by Community Surface Dynamics Modeling System (CSDMS)
- Modular, standardized components for earth surface dynamics that are easily integrated
- Coupled tidal flow, morphology (Mariotti et al., 2018), and vegetation (Morris et al., 2002) components

COMP MODEL: MODEL INTEGRATION

COMP MODEL: CONCEPTUAL DIAGRAM

COMP MODEL: DEMO SITE

COMP MODEL: INPUTS/SCENARIOS

- The model allows for a multitude of input parameters
- Main variable of interest
 - Sea level rise

User defined inputs

- Mean sea level
- Tidal range
- Sediment density
- Tidal sediment dispersion
- Critical shear stress
- Settling velocity
- Soil porosity
- Suspended sediment concentration
- Bedload downslope coefficient
- Initial ponding depth
- Pond expansion rate
- Roughness
- ETC

COMP MODEL: VEGETATION DYNAMICS

- Modified SLR scenarios drive the changes in the model.
- The addition of the CWEM adds model complexity.

COMP MODEL: RSLR VS LAND COVER

COMP MODEL: VEGETATION OUTPUTS

- The parametric vegetation index allows for a more complex calculation of Manning's Coefficient
- This influences erosion and subsequent vegetation development
- CWEM integration allows for a spatially explicit accretion calculation

COMP MODEL: FUTURE MODULES/COMPONENTS

- Additional modules to plug in.
 - Ponding (in development)
 - Wave erosion (not yet started)

With Ponding

Without Ponding

COMP MODEL: GULL ISLAND DEMO

With Ponding

uplands

mudFlats

marsh sparse

marsh moderate

marsh dense

water

50

400

Without Ponding

FUTURE WORK

- Assess model performance
 - Compare to real world conditions
 - Test against other models
 - Add additional "modules" such as wave erosion.

- Model Certification
 - Work with EMRRP (Brook) and EcoPCX

- Mariotti G, Murshid S. (2018). A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System. Journal of Marine Science and Engineering. 6(4):154. <u>https://doi.org/10.3390/jmse6040154</u>
- Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., (2002) Responses of Coastal Wetlands to Rising Sea Level, Ecology, 83(10) p 2869-2877. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2
- Russ, E.R., T.S. Cagle., and T.M. Swannack. 2024. Considerations for Integrating Ecological and Hydrogeomorphic Models: Developing a comprehensive Marsh Vegetation Model. (ERDC/TN EMRRP-EM-12). Vicksburg, MS: US Army Engineer Research and Development Center. <u>http://dx.doi.org/10.21079/11681/48131</u>

CONNECT WITH US

EcoMod

Environmental Laboratory U.S. Army Engineer Research and Development Center U.S. Army Corps of Engineers ecomodteam@usace.army.mil https://ecomod.erdc.dren.mil

ecomod

Thomas.P.Huff@usace.army.mil

Emily.R.Russ@usace.army.mil

US Army Corps

of Engineers

U.S. ARMY

Todd.M.Swannack@usace.army.mil

ERDC

