META-ANALYSIS OF RIPARIAN ZONE WIDTH EFFECTS ON INSTREAM PROCESSES AND TAXA RICHNESS

Rosamar Ayala-Torres ORISE Fellow

Kyle McKay, Ph.D., P.E. Environmental Laboratory

EMRRP Webinar Series January 2024

2

PRESENTATION OVERVIEW

- Overview of riparian zones and approach to model development
- A brief primer on meta-analysis
- Meta-analysis of riparian buffers
- Using the meta-analysis to develop a screening model for riparian zones

Photo: Beargrass Creek, Louisville, Kentucky (Laura Mattingly)

RIPARIAN ZONES AS KEY TRANSITIONAL ECOSYSTEMS LINKING FRESHWATER AND TERRESTRIAL AREAS

Figure: Conceptual model of riparian functions (Samantha Wiest) UNCLASSIFIED

LOTS OF FORMS OF RIPARIAN MANAGEMENT

Figures: Mississippi River Basin Conservation Network, Ainslie et al. (1999, ERDC WRP-DE-17), Sacramento levee system, California (McKay), Proctor Creek, Atlanta, Georgia (McKay)

DIFFERENT FUNCTIONS => DIFFERENT WIDTHS

Figure: University of Tennessee (<u>https://riparian.utk.edu/why-riparian-zones/</u>)

WIDTH AS A SURROGATE FOR MANY PROCESSES

Target widths vary widely by jurisdiction, context, and other factors

Geographic	Mean	Range	Number of
region	(m)	(m)	regulations
USA	35	1.5 – 815	62
Americas (without USA)	83	5 – 500	22
Europe, Asia, Africa, and Oceania	88	5 – 1000	32

TIERED APPROACH TO RIPARIAN MODEL DEVELOPMENT

	Low level of effort	Moderate level of effort	High level of effort
Scope	Rapid, desktop tools for order-of-magnitude estimates comparing sites	Rapid assessment for comparing the relative effects of alternatives at the site-scale	Regionally tailored methods that target specific ecological targets and have often been field verified
Metric Types	Simple geospatial	Simple geospatial Rapid, semi-quantitative field assessment	Typically empirical measurements
Time commitment	minutes-hours	hours-days	varies
Geography	Global meta-analysis	National, on-the-shelf field assessment tool	Regionally scoped models (compiled into a web applications)
Processes included	Instream processes Taxa-oriented outcomes Corridors	Instream processes Taxa-oriented outcomes Corridors	Instream processes Taxa-oriented outcomes Corridors

PROJECT OBJECTIVES

- Develop a simple, desktop method for assessing the relative change in riparian quality as buffer width increases
- Compile globally available data on buffer performance and analyze with meta-analysis
 - Compile empirical evidence building from existing qualitative reviews (Wenger 1999, Fischer and Fischenich 2000)
 - Incorporate studies conducted since seminal reviews (i.e., 2000-2021) and expand the focal geography (i.e., US -> Global)
 - Extend beyond water quality outcomes to taxa-oriented processes (Lind et al. 2019)

Table 1. Recommended Widths of Buffer Zones and Corridors for Water Quality Considerations

Considerations				
Authors	State	Width	Buffer Type	Benefit
Woodard and Rock (1995)	Maine	<u>></u> 15m	Hardwood buffer	The effectiveness of natural buffer strips is highly variable, but in most cases, a 15m natural, undisturbed buffer was effective in reducing phosphorus concentrations adjacent to single family homes
Young et al. (1980)		<u>></u> 25m	Vegetated buffer	25m buffer reduced the suspended sediment in feedlot runoff was reduced by 92%
Horner and Mar (1982)		<u>></u> 61m	Grass filter strip Vegetated buffer strip	Removed 80% of suspended sediment in stormwater
Lynch, Corbett, and Mussalem (1985)		<u>></u> 30m	·	30-m buffer between logging activity and wetlands and streams removed an average of 75 to 80% of suspended sediment in stormwater; reduced nutrients to acceptable levels; and maintained water tempertures within 1°C of their former mean temperature.
Ghaffarzadeh, Robinson, and Cruse (1992)		<u>></u> 9m	Grass filter strip	Removed 85% of sediment on 7 and 12% slopes
Madison et al. (1992)		<u>></u> 5m	Grass filter strip	Trapped approximately 90% of nitrates and phosphates
Dillaha et al. (1989)		<u>></u> 9m	Vegetated filter strip	Removed an average of 84% of suspended solids, 79% of phosphorus, and 73% of nitrogen
Lowrance et al. (1992)		<u>></u> 7m		Nitrate concentrations almost completely reduced due to microbial denitrification and plant uptake
Nichols et al. (1998)	Arkansas	<u>≥</u> 18m	Grass filter strips	Reduced estradiol (estrogen hormone responsible for development of the female reproductive tract) concentrations in runoff into surface water by 98%.
Doyle et al. (1977)		<u>></u> 4m	Grass filter strips and forested buffers	Reduced nitrogen, phosphorus, potassium, and fecal bacteria from runoff.
Shisler, Jordan, and Wargo (1987)	Maryland	<u>></u> 19m	Forested riparian buffer	Removed as much as 80% of excess phosphorus and 89% of excess nitrogen

Figure: Fischer and Fischenich (2000)

META-ANALYSIS AS A TOOL FOR SYNTHESIZING RESEARCH

Method used to synthesize evidence across studies to detect effects, estimate magnitudes and variations and to analyze the factors that influence (Gurevitch et al., 2018).

- First used on in psychology (Glass 1976) and the medical sciences (Borenstein et al. 2009; Moher et al., 2009).
- Meta-analysis have also been recognized in the fields of ecology and conservation biology with the method becoming increasingly popular since the 1990s (Vetter et al., 2013).

Increase in publications since 1992 in which meta-analysis appears in the title.

Figure: Vetter et al. (2013)

REPEATABLE TECHNIQUES FOR META-ANALYSIS

- PRISMA

Preferred Reporting Items for Systematic reviews and Meta-Analyses

PLOS MEDICINE

Guidelines and Guidance

Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement

David Moher^{1,2}*, Alessandro Liberati^{3,4}, Jennifer Tetzlaff¹, Douglas G. Altman⁵, The PRISMA Group[¶]

doi:10.1038/nature2575

Eco-EvoEcology and Evolution

REVIEW

Meta-analysis and the science of research synthesis

Jessica Gurevitch¹, Julia Koricheva², Shinichi Nakagawa^{1,4} & Gavin Stewart

Meta: analysis is the quantitative, scientific synthesis of research results. Since the term and modern approaches to research synthesis were first introduced in the 1970s, meta-randysis has had a revealed normality of the single state of the sin BIOLOGICAL REVIEWS Mid Bio (2021) 96 (pp. 1090-1722) bio 1011.04.04.17271

Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension

Rose E. O'Dea¹⁺, Malgorzata Lagisz¹, Michael D. Jennions², Julia Koricheva³, Daniel W.A. Noble^{1,2}, Timothy H. Parker⁴, Jessica Gurevitch⁴, Matthew J. Page⁶, Gavin Stevart⁷, David Moher⁴, and M

Table 1. Checklist of items to include when reporting a systematic review or meta-analysis.

Section/Topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	e l
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	•
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered language, publication status) used as criteria for eligibility, giving rationale.	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable included in the meta-analysis).	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	I
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., i^2) for each meta-analysis.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	•
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	i
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period and provide the citations.	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16])	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval or identified research, reporting bias).	f
Condusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	

doi:10.1371/journal.pmed.1000097.t001

UNCLASSIFIED

ERDC

WHAT DATA ARE BEING SYNTHESIZED?

Top three general objectives needed to conduct a meta-analysis:

- 1) estimating an overall effect size
- 2) quantifying consistency (heterogeneity) between studies
- 3) explaining the heterogeneity

EFFECT SIZE

Typically used to refer to the magnitude or strength of an effect of interest or its biological interpretation.

- Three most common types of effect measurements
 - Single
 - Comparative
 - Association
- It is important to note that any measures with sampling variance can become an 'effect size'. (Nakagawa et al., 2023)

Single -> average & SD / SE

Comparative -> Control results (X±SD) vs Treatment results (X±SD)

Association -> Pearson correlation, Spearman correlation

WHAT OUTCOMES CAN BE OBTAINED FROM META-ANALYSIS?

Plot C & D

Plot B

 Regression / tries to relate the size of the effect to characteristics of the studies involved. (Israel and Richter, 2011)

- Forest plot / graph that visually shows individual studies,

 [C] Categorical moderator Boxplot

effect size, and the overall estimate

Common effect model

Random effect model

 [D] Continuous moderator Bubble plot

Figure: Gurevitch et al. (2018)

WHAT OUTCOMES CAN BE OBTAINED FROM META-ANALYSIS?

e Precision 0 Effect size Study year 1 + Study year 2 + Study year 3 + Study year 4 + Study year 5 + Study year 6 + Study year 7 + Study year 8 + Study year 9 + Study year 10 n Effect size

Figure: Gurevitch et al. (2018)

Plot E

- Funnel plot
 - Understanding publication bias based on the funnel asymmetry

Plot F

- Forest plot usually uses on psychology and health studies.
 - Cumulative meta-analysis in which outcomes are added into the analysis, in this example cumulative by time.

ERDC

US Army Corps of Engineers®

U.S. ARMY

B. 379.00

EXISTING SYNTHESIS ON RIPARIAN BUFFERS

What are the gaps in these studies that we are filling?

- Compilation of empirical evidence rather than judgment
- Expanding data sets
 - Instream processes / removal efficiency
- Additional processes
 - Ecological processes / species richness

STUDY IDENTIFICATION

DATA COMPILATION AND EFFECT SIZE

26 studies included in
Instream Process
Meta-Analysis 31 studies included in
Taxa Richness
Meta-Analysis Image: Imag

Part 1:

Objective:

Compile and synthesize data on the effects of buffer width on *Instream* and *Ecological processes*, to determine if the buffer width is an important factor to asses riparian zone.

Plan:

Use the measurements that already associates the response variable with width as effect size (r) to reexamine the effectiveness of studies interventions.

R packages:

- 'esc'
- 'meta'
 - 'meta-cor'

DATA DESCRIPTION	
Total Papers	26
Buffer width range	0 – 100 m
Publication Year range	1990- 2021
Contaminants monitored	Nitrogen, Phosphorus, Sediments,
	Pesticides/Herbicides

OUTCOME	
Meta-correlation (r)	0.8854
95% CI	0.8522; 0.9185
²	84.2%

Observations:

- Consistent with the majority of previous quantitative studies exist a positive correlation between removal efficiency of contaminants and the width of riparian buffer.
- Was not expected the STRONG (r > 0.8) positive correlation.
- Confidence intervals reaffirms the results significance.
- High heterogeneity is the norm in EcoEvo Meta-analysis.

UNCLASSIFIED

UNCLASSIFIED

Source	COR (9	5% CI)	
Abu-Zreig, et al. 2003 - P	0.7224	[0.0598; 1.3850]	
Abu-Zreig, et al. 2003 - P	0.8211	0.3696; 1.2726]	
Abu-Zreig, et al. 2003 - P	0.9446	[0.7952; 1.0940]	
Abu-Zreig, et al. 2003 - P	0.9452	[0.7974; 1.0929]	
Aguiar, et al. 2015 - N	0.9991	0.9978; 1.0003	
Aquiar et al 2015 - N	0.9720	0.8927: 1.01611	
Aguiar, et al. 2015 - N	0.9935	0.9845: 1.00251	
Aguiar, et al. 2015 - N	0.9602	0.9061; 1.0143]	-+-
Aguiar, et al. 2015 - N	0.7125	[0.3714; 1.0537]	
Aguiar, et al. 2015 - N	0.7753	[0.4988; 1.0517]	
Aguiar, et al. 2015 - N	0.8869	[0.7390; 1.0348]	-
Aguiar, et al. 2015 - N	0.4596	[-0.0869; 1.0062] -	
Aguiar, et al. 2015 – P	0.9974	0.9938; 1.0010]	
Aguiar, et al. 2015 - P	0.8836	0.7317: 1.03551	
Aguiar, et al. 2015 - P	0.9933	0.9840: 1.00261	
Aguiar, et al. 2015 - P	0.8793	0.7221: 1.03651	
Aguiar, et al. 2015 - P	0.6976	0.3419; 1.0533]	
Aguiar, et al. 2015 - P	0.9063	[0.7826; 1.0301]	-
Aguiar, et al. 2015 - P	0.7361	[0.4186; 1.0536]	
Aguiar, et al. 2015 - P	0.5001	[-0.0195; 1.0197]	•
Borin, et al. 2005 - Sed	0.1170		•
Chung et al. 2005 - P	0.0378	[-1.0/01; 1.1850]	
Chung, et al. 2010 - N	0.7576	0.3400-1.17511	
Chung, et al. 2010 - Sed	0.8824	0.6653: 1.09941	
da Silva et al. 2020 - N	0.9952	0.9906; 0.9998]	
da Silva et al. 2020 - P	0.8875	[0.7865; 0.9884]	-
Ding, et al. 2011 - Sed	0.9997	[0.9993; 1.0001]	<u>•</u>
Ding, et al. 2011 - Sed	0.9997	[0.9994; 1.0000]	
Dunn, et al. 2011 - P	0.0698	[-0.2750; 0.4146]	
Dunn, et al. 2011 - P Dunn, et al. 2011 - Sed	0.0090	[-0.7204; 0.8001]	
Dunn, et al. 2011 - Sed	0.7949	0.5003: 1.08951	
Ferrarini, et al. 2017 - N	0.9517	0.9191: 0.98441	+
Grudzinski, et al. 2020 - All	0.7100	0.5325; 0.8875]	
Hook 2003 - Sed	1.0000	[1.0000; 1.0000]	1
King, et al. 2016 – N	0.1067	[-0.3378; 0.5513]	•
King, et al. 2016 – N	0.3073	[-0.0998; 0.7145] -	
King, et al. 2016 - N	0.2064	[-0.2241; 0.6369]	•
King, et al. 2016 - N	0.5322	0.2098; 0.8545]	
Lee, et al. 2003 - Sed	0.8820	0 7794: 0 98461	
Lee et al 2003 - P	0.8900	[0.7940: 0.9860]	
Lee, et al. 2003 - Sed	0.8004	0.6344; 0.9664]	- -
Lee, et al. 2003 - N	0.9105	0.8315; 0.9895]	
Lee, et al. 2003 - P	0.9130	0.8361; 0.9899]	-
Lyu, et al. 2021 - N	0.4900	[0.3552; 0.6248]	
Mankin, et al. 2007 - Sed	0.9995	[0.9982; 1.0008]	
Mankin, et al. 2007 - P Mankin, et al. 2007 - N	0.9293	[0.7404; 1.1183]	
Mankin, et al. 2007 - N	0.7022	0.0003, 1.4048]	
Mankin, et al. 2007 - P	0.9078	0.6642: 1.15151	
Mankin, et al. 2007 - N	0.8212	0.3699; 1.2725]	
Mankin, et al. 2007 - Sed	0.9994	[0.9978; 1.0010]	•
Mankin, et al. 2007 - P	0.9066	[0.6598; 1.1534]	
Mankin, et al. 2007 - N	0.8468	[0.4547; 1.2389]	
McKergrow, et al. 2006 - N	0.9938	[0.9892; 0.9983]	
McKergrow, et al. 2006 - P	0.8841	0.8040; 0.9030]	
McKergrow, et al. 2006 - Sed	0.8580	0.0074,0.0020	
McKergrow, et al. 2006 - P	0.9432	0.9030; 0.98341	
McKergrow, et al. 2006 - Sed	0.9407	0.8988; 0.9826]	
Ramesh, et al. 2021 - Sed	0.9995	[0.9994; 0.9996]	
Rasouli, et al. 2015 - Sed	0.5017	[-0.0526; 1.0560]	-
Renout 2013 - N	0.9433	[0.9032; 0.9834]	*
Repout 2013 = P	0.9657	0.9032 0.98341	
Renouf 2013 - P	0.9857	0.9754: 0.99601	
Rosa, et al. 2017 - Sed	0.9720	0.9520; 0.9921]	
Rosa, et al. 2017 - N	0.9973	[0.9947; 0.9999]	
Rosa, et al. 2017 - P	0.9989	[0.9975; 1.0003]	- C
Schoonover, et al. 2006 - Sed	0.9488	[0.7534; 1.1443]	
Schoonover, et al. 2006 - Sed	0.7926	0.0638; 1.5214]	
Sweeney and Newbold 2014 - N	0.4900		
Sweeney and Newhold 2014 - N	0.4900	0.2134, 0.76661	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed	0.4900	[0.2134; 0.7666] [0.2134; 0.7666]	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed	0.4900 0.5100 0.5100	[0.2134; 0.7666] [0.1935; 0.8265] [0.1935; 0.8265]	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P	0.4900 0.5100 0.5100 0.9910	0.2134; 0.7666] (0.1935; 0.8265] (0.1935; 0.8265] (0.9707; 1.0113]	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P	0.4900 0.5100 0.5100 0.9910 0.9910	0.2134; 0.7666] 0.1935; 0.8265] 0.1935; 0.8265] 0.9707; 1.0113] 0.9707; 1.0113]	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P Syversen 2005 - Sed	0.4900 0.5100 0.9910 0.9910 0.8849	0.2134; 0.7666] 0.1935; 0.8265] 0.1935; 0.8265] 0.9707; 1.0113] 0.6395; 1.1304]	
Sweeney and Newbold 2014 - N Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed	0.4900 0.5100 0.5100 0.9910 0.9910 0.8849 0.8849	0.2134; 0.7666] 0.1935; 0.8265] 0.9707; 1.0113] 0.9707; 1.0113] 0.6395; 1.1304] 0.6395; 1.1304]	
Sweeney and Newbold 2014 – N Sweeney and Newbold 2014 – Sed Syversen 2005 – P Syversen 2005 – P Syversen 2005 – Sed Syversen 2005 – N Syversen 2005 – N Syversen 2005 – N	0.4900 0.5100 0.9910 0.9910 0.8849 0.8849 0.9790 0.9790	0.2134.07060 0.1935.0.2265 0.9707.10113 0.6395.11304 0.6395.11304 0.9319.10261 0.9707	
Sweeney and Newbold 2014 – N Sweeney and Newbold 2014 – Sed Sweeney and Newbold 2014 – Sed Syversen 2005 – P Syversen 2005 – P Syversen 2005 – Sed Syversen 2005 – N Syversen 2005 – N Syversen 2005 – N	0.4900 0.5100 0.9910 0.9910 0.8849 0.8849 0.9790 0.9790 0.9790 0.6981	0.2134.07666] 0.1935.08265] 0.9707.10113] 0.6395;11304] 0.6395;11304] 0.6395;11304] 0.6395;11304] 0.6395;11204] 0.6395;12021] 0.9318;10221]	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen 2005 - N Wenger, et al. 2018 - Sed	0.4900 0.5100 0.9910 0.9910 0.8849 0.8849 0.9790 0.9790 0.6981 0.7335	0.2134:07060 0.1935.0.2265 0.9707:0.113 0.6395;1.2265 0.9707:1.0113 0.6395;1.1304 0.6395;1.1304 0.9319;1.0261 0.9319;1.0261 0.3183:1.0779 0.3912;1.0757	
Sweeney and Newbold 2014 - Ne Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen 2005 - N Wenger, et al. 2018 - Sed Wenger, et al. 2016 - Sed	0.4900 0.5100 0.9910 0.9910 0.8849 0.8849 0.9790 0.9790 0.6981 0.7335 0.7106	0.2134.07666] 0.1335.08265] 0.1935.08265] 0.9707.10113] 0.6395.11304] 0.6395.11304] 0.6395.11304] 0.9319.10261] 0.3183.0779] 0.3182.10779] 0.3182.10779] 0.3182.10779]	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen 2005 - N Wenger, et al. 2018 - Sed Wanger, et al. 2018 - Sed Zhang, et al. 2010 - Psed Zhang, et al. 2010 - Psed Yheng	0.4900 0.5100 0.9910 0.9910 0.8849 0.8849 0.9790 0.9790 0.6981 0.7335 0.7106 0.7330	0.2134.07666 0.1935.0.8265 0.9707.1013 0.63707.1013 0.6395.1304 0.6395.11304 0.6395.11304 0.9318.10261 0.9318.10261 0.3183.10779 0.3182.10757 0.6021.0.8191 0.6660.0.6800	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversene 2005 - Po Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Wenger, et al. 2018 - Sed Zhang, et al. 2018 - Sed Zhang, et al. 2010 - Pset/Herb Zhang, et al. 2010 - N	0.4900 0.5100 0.9910 0.9910 0.8849 0.9790 0.9790 0.9790 0.9790 0.9735 0.7106 0.7330 0.7237	0.2134.07060 0.1935.02065 0.9707.10113 0.6395.11304 0.6395.11304 0.6395.11304 0.9319.10261 0.3919.10261 0.3919.10261 0.3912.10777 0.6021.08191 0.6000.08600 0.6002.084422	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen	0.4900 0.5100 0.9910 0.9910 0.8849 0.9790 0.9790 0.9790 0.9790 0.6981 0.7335 0.7106 0.7330 0.7237 0.7237 0.5257	10 2134 ()7666 10 35(0)2255 10 1935 () 2225 10 1935 () 2225 10 9707 : 10 113 10 8396 : 11 304 10 8396 : 11 304 10 8316 : 10221 10 9316 : 10221 10 9316 : 10221 10 9316 : 10277 10 8602 : 0 9101 10 8602 : 0 9101 10 8602 : 0 9101 10 8602 : 0 9412 10 8602 : 0 9442 10 9356 0 89956	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Wenger, et al. 2018 - Sed Zhang, et al. 2018 - Sed Zhang, et al. 2018 - Sed Zhang, et al. 2010 - PestVerb Zhang, et al. 2010 - P Strang, et al. 2010 - P White et al 2007 - Sed	0.4900 0.5100 0.910 0.9910 0.8849 0.8849 0.9790 0.9790 0.6981 0.7335 0.7106 0.7330 0.7237 0.7333 0.5656	0.2133,07666 0.1935,0.8265 0.9707,0113 0.6396,1.2625 0.9707,10113 0.6396,1.1304 0.6396,1.1304 0.9319,1.0261 0.3183,10779 0.6031,0.81021 0.6091,0.8000 0.6002,0.8000 0.6000,0.8000000000000000000000000000000	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen 2005 - N Syversen 2005 - N Wenger, et al. 2018 - Sed Zhang, et al. 2010 - Sed Zhang, et al. 2010 - Sed Zhang, et al. 2010 - P Strang, et al. 2010 - P White et al 2010 - P Duff and Tirkska 1990 - N Duff and Tirkska 1990 - N	0.4900 0.5100 0.910 0.9910 0.8849 0.8849 0.9790 0.6981 0.7335 0.7106 0.7330 0.7237 0.7333 0.5697 0.6124	0.2134.07066 0.2134.07066 0.1935.0.2265 0.9707.10.113 0.6395.1.1304 0.6395.1.1304 0.6395.1.1304 0.9319.10261 0.3918.10261 0.3912.10757 0.3912.10757 0.6621.0.8191 0.6602.0.8402 0.6032.0.8442 0.6032.0.8442 0.2159.0.9235 0.0215.1.1091 0.1123.1.11251	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Syversen 2005 - N Wenger, et al. 2018 - Sed Wenger, et al. 2018 - Sed Wenger, et al. 2018 - Sed Zhang, et al. 2010 - Pest/Herb Zhang, et al. 2010 - PSH/Herb Zhang, et al. 2010 - P White et al 2007 - Sed Duff and Triska 1990 - N Duff and Triska 1990 - N Duff and Triska 1990 - N	0.4900 0.5100 0.9910 0.9910 0.8849 0.9790 0.6981 0.7335 0.7106 0.7333 0.7237 0.7333 0.7237 0.7333 0.5697 0.5586 0.6124	0.2134.07666 0.1935.0.8265 0.9707.0133 0.8707.1013 0.6395.1304 0.6395.1304 0.6395.1304 0.9318.10261 0.9318.10261 0.9318.10271 0.6021.0.8191 0.6060.0.8000 0.6060.0.8000 0.6062.0.8000 0.6062.0.8000 0.6062.0.8000 0.0081.1001 0.0081.1001 0.0123.1125 0.1514.11126	
Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Sweeney and Newbold 2014 - Sed Syversen 2005 - P Syversen 2005 - Sed Syversen 2005 - Sed Syversen 2005 - N Wenger, et al. 2018 - Sed Zhang, et al. 2018 - Sed Zhang, et al. 2010 - PestVerb Zhang, et al. 2010 - PestVerb Zhang, et al. 2010 - P White et al 2007 - Sed Duff and Triska 1990 - N Duff and Triska 1990 - N Duff and Triska 1990 - N	0.4900 0.5100 0.9910 0.9910 0.8849 0.9790 0.6981 0.7335 0.7106 0.7333 0.7237 0.7237 0.7333 0.5697 0.5586 0.6124 0.6320 0.8854	0.2134.77665 0.1935.0.2265 0.9707.10.113 0.6395.1.2265 0.9707.10.113 0.6395.1.1304 0.03915.10261 0.9319.10261 0.9319.10261 0.03912.10777 0.6021.0.8191 0.6060.0.8600 0.6060.0.8600 0.6062.0.8600 0.0122.1.125 0.025 0.0125 0.0125 0.0125 0.025 0.	

-1.5 -1 -0.5 0 0.5 1 1.5

COR (95% CI)

ECOLOGICAL PROCESS

DATA DESCRIPTION	
Total Papers	31
Buffer width range	0 – 2088 m
Publication Year range	19953 - 2022
Taxa monitored	Vegetation, Invertebrates,
	Herpetofauna, Mammals, Birds, Fish

OUTCOME	
Meta-correlation (r)	0.5957
95% CI	0.4850 0.7065
²	95%

Observations:

- Overall moderate positive correlation (r > 0.5) between relative species richness and the width of riparian buffer.
- Confidence intervals reaffirms the results significance, but the present variance observed on the forest plot.
- High heterogeneity is the norm in EcoEvo Meta-analysis.

lemu; et al. 2018 - Vegetation asatti; et al. 2018 - Fish arveau; et al. 1995 - Birds	0.4565 [0.1904; 0.7226]	
asatti; et al. 2015 - Fish arveau; et al. 1995 - Birds	0.4000 0.1804, 0.7220	
arveau; et al. 1995 - Birds	0.0000 [0.0000. 4.00001	
arveau; et al. 1990 - Birds	0.4504 (0.0000) 1.0000	
annual at at 1005 Diada	0.4024 [-0.3209; 1.2318]	
arveau; et al. 1995 - Birds	0.1009 [-0.8690; 1.0709]	
arveau; et al. 1990 - Biros	0.3347 [-0.5350; 1.2049]	
eere; et al. 2022 - Invertebrates	0.2241 [-0.2029; 0.0012]	
eere; et al. 2022 - Invertebrates	0.5391 [0.2201; 0.8580]	
eere; et al. 2022 - Invertebrates	0.5145 [0.4091; 0.6199]	_ =
eere; et al. 2022 - Fish	0.2241 [-0.1276; 0.5759]	
eere; et al. 2022 - Herpetofauna	0.0200 [-0.2658; 0.3058]	
eere; et al. 2022 - Birds	0.2607 [0.1171; 0.4042]	™_
eere; et al. 2022 - Mammals	0.3304 [-0.0702; 0.7309]	
eere; et al. 2022 - Mammals	0.6564 [0.4004; 0.9123]	
ioforth; et al. 2001 – Invertebrates	0.2055 [-0.8783; 1.2893]	
ioforth; et al. 2001 - Fish	0.1580 [-0.9453; 1.2613]	
ioforth; et al. 2001 - Herpetofauna	0.2696 [-0.7797; 1.3189]	
oforth; et al. 2001 - Birds	0.7700 [0.3093; 1.2307]	
rimstead 2017 - Invertebrates	0.9932 [0.9876; 0.9987]	
rimstead 2017 - Invertebrates	0.9939 [0.9884; 0.9994]	1
rimstead 2017 - Invertebrates	0.9939 [0.9902; 0.9976]	
anowski; et al. 2003 – Birds	0.8266 0.6395; 1.0138	
asselquist; et al. 2015 - Vegetation	0.9992 [0.9984; 1.0001]	
odges and Krementz 1996 - Birds	0.9611 [0.9285; 0.9937]	
ughes; et al. 2008 - Invertebrates	0.9905 [0.9857; 0.9953]	
ughes; et al. 2008 - Invertebrates	0.9823 0.9733; 0.99121	•
w.si.rvi: et al. 2020 - Invertebrates	0.6963 [0.1914: 1.2012]	
w si rvi: et al. 2020 - Invertebrates	0.9465 [0.8286: 1.0644]	
w si rvi: et al. 2020 - Invertebrates	-0.5505 [-1.5164: 0.4154]	
w si rvi: et al. 2020 - Invertebrates	0 3257 [-0 5503: 1 2017]	
w si rvi: et al. 2020 - Invertebrates	0.0411 [-0.9372: 1.0195]	
w si rvi: et al. 2020 - Invertebrates	0.9578 [0.8642: 1.0513]	Г I в
w.si.rvi: et al. 2020 - Invertebrates	-0.3611 [-1.5663: 0.84421 -	_
w si rvi: et al. 2020 - Invertebrates	0.6232 [0.0239 1.2226]	-
ilgo: et al. 1008 - Birds	0.0403 [0.9781: 1.0225]	T
prion and Kennedy 2000 - Fish	0.0908 [0.0680: 1.0128]	
arian and Kennedy 2000 - Invartabrator	0.0729 [0.0121: 1.0225]	
alfori 2021 – Invortobrator	0.7778 [0.4210: 1.1241]	
lalfesi 2021 - Invertebrates	0.0052 [0.0971; 1.0025]	
ultineura: et al. 2020 - Vegetation	0.0021 [0.0102: 0.0050]	
lutinova; et al. 2020 - Vegetation	0.0005 (0.0850; 1.0101]	
oe, et al. 2014 - Vegetation	0.9695 [0.9659; 1.0131]	M
owers 2010 - FISH	0.0700 (0.0425, 4.0454)	
amberg, et al. 2020 - Invertebrates	0.8780 0.9420; 1.0154	_ _ *
outn; et al. 2018 - Invertebrates	0.7023 0.0492; 0.8055]	
tandford 2018 - Invertebrates	0.7900 [0.0972; 0.8828]	⊥ =
vade 2021 - Invertebrates	-0.0096[-0.4592; 0.4401]	
Initaker and Montevecchi 1999 - Birds	0.7306 [0.4947; 0.9665]	
eung; et al. 2017 - Invertebrates	0.3249 [-0.5516; 1.2014]	
eung; et al. 2017 - Invertebrates	0.1067 [-0.8621; 1.0755]	
irigui; et al. 2019 - Invertebrates	-0.3916 [-0.5685; -0.2147]	
ingui; et al. 2019 - Fish	-0.2828 [-0.4750; -0.0906]	
irigui; et al. 2019 – Invertebrates	-0.1638 [-0.3672; 0.0395]	- + ! _
ecerf and Richardson 2010 - Invertebrates	0.9864 [0.9558; 1.0170]	· · · · · · · · · · · · · · · · · · ·
ecerf and Richardson 2010 - Vegetation	0.5735 [-0.1860; 1.3329]	
agwireyi and Sullivan 2015 - Invertebrates	0.5300 [0.1050; 0.9550]	
esely and McComb 2002 - Amphibian	0.9142	
earson and Manuwal 2001 - Birds	0.1755 [-0.6741; 1.0250]	
earson and Manuwal 2001 - Birds	0.1412 [-0.7179; 1.0002]	_
hirley and Smith 2005 - Birds	0.6700 [0.5124; 0.8276]	∔∎-
agar 1999 - Birds	0.4331	
otal	0.5957 [0.4850; 0.7065]	
rediction interval	[-0.1841; 1.3755]	

DATA COMPILATION AND EFFECT SIZE

		-		
26 studies included in Instream Process Meta-Analysis		31 studies included in Taxa Richness Meta-Analysis		
[Response variables -> Effect Size]				
ţ		Ļ		
Correlation : Removal Efficiency and Buffer Width		Correlation : Relative Species Richness and Buffer Width		
Mean : Removal efficiency		Proportion : Relative Species Richness		
	26 studies included in Instream Process Meta-Analysis [Response variab Correlation : Removal Efficiency and Buffer Width Mean : Removal efficiency	26 studies included in Instream Process Meta-Analysis [Response variables Correlation : Removal Efficiency and Buffer Width Mean : Removal efficiency	26 studies included in Instream Process Meta-Analysis 31 studies included in Taxa Richness Meta-Analysis [Response variables -> Effect Size] Image: Correlation : Removal Efficiency and Buffer Width Correlation : Removal Efficiency and Buffer Width Correlation : Relative Species Richness and Buffer Width Mean : Removal efficiency Proportion : Relative Species Richness	26 studies included in Instream Process Meta-Analysis 31 studies included in Taxa Richness Meta-Analysis [Response variables -> Effect Size] Image: Correlation : Removal Efficiency and Buffer Width Correlation : Removal Efficiency and Buffer Width Correlation : Relative Species Richness and Buffer Width Mean : Removal efficiency Proportion : Relative Species Richness

Part 2:

Objective:

Develop essential information for scientists, public and decision makers can estimates riparian buffer width thresholds for functional outcomes based on *Instream and Ecological processes*.

Plan:

Use the single measurements from the response variable as effect size to reexamine the effectiveness of studies interventions and through meta-regression help explaining the variation and provide a tool that help explore best functional buffer width threshold.

R packages:

- 'esc'
- 'meta'

•

- 'meta-mean'
- 'meta-prop'
 - 'meta-reg'

Instream Removal Efficiency by Riparian Buffer Width: Vegetation (Quantile 0.1, 0.5 & 0.9)

	Instream		
Data Description:			
Total Observations	82		
Overall Mean	64.23		
95% CI	58.31; 70.16		
Regression	Y = 44.706 + 8.194 ln (x)		
p-value	< 0.05 (0.02)		

Observations:

- In average, without taken in consideration the width, exists a 64% of removal efficiency, meaning the existence of other moderators that helps the contaminants removal.
- Most of the included studies report a mixed vegetation (dark green dots).

EACH OUTCOME CAN BE FURTHER SUBDIVIDED INTO MORE SPECIFIC INSTREAM PROCESSES

- The excess of nutrients removal regression behaves similar to the overall removal efficiency regression.
 - Using the regression outcomes can estimate that over the 40 m a 75% of removal efficiency on Nitrogen and Phosphorus removal.
- Sediment removal regression tends to present a different behavior. More studies would like to be add to a better outcome.

	n	Regression	Buffer Width (m) with 75% effectiveness		
All (red)	82	Y = 44.706 + 8.194 ln (x) 40.3			
Sub-groups:					
Nitrogen (orange)	35	Y = 34.520 + 10.710 ln (x)	43.8		
Phosphorus (blue)	25	Y = 25.314 + 12.929 ln (x)	46.7		
Sediments (green)	20	Y = 90.704 – 3.055 ln (x)	170.8		

PART 2 ECOLOGICAL PROCESS

Relative Species Richeness by Riparian Buffer Width: Vegetation (Quantile 0.1, 0.5 & 0.9)

EcologicalData Description:Total Observations45Overall Proportion0.825695% Cl0.7645; 0.8867Y = 0.667 + 0.044 ln (x)p-value< 0.10 (0.06)</td>

Mixed Observations:

UNCLASSIFIED

- In average, without taken in consideration the width exists a 75% of relative species richness, meaning the existence of other moderators that helps species richness on the area.
- Most of the studies that were taken in consideration show the tendency to have trees as the buffer vegetation.

EACH OUTCOME CAN BE FURTHER SUBDIVIDED INTO MORE SPECIFIC INSTREAM PROCESSES

- The overall richness increase with a bigger buffer, and is observed that Invertebrates, Mammals, Birds and Herpetofauna present a similar behavior.
- Vegetation and Fish regression present a different behavior.
- Using the regression outcomes a wide buffer width range was found **5.1 30 m to present a 75% (or 0.75)** of relative species richness.

	n	Regression	Buffer Width (m) with 75% effectiveness	
All (red)	45	Y = 0.667 + 0.044 ln (x) 6.6		
Sub-groups:				
Vegetation (dark green)	4	Y = 0.885 - 0.052 ln (x)	13.4	
Birds (light blue)	7	Y = 0.377 + 0.146 ln (x)	12.9	
Fish (light green)	3	Y = 0.970 + 0.007 ln (x)	0.0	
Herpetofauna (pink)	3	Y = 0.597 + 0.094 ln (x)	5.1	
Mammals (purple)	6	Y = 0.333 + 0.119 ln (x)	33.3	
Invertebrates (orange)	22	Y = 0.534 + 0.069 ln (x)	22.9	

LIMITATIONS OF META-ANALYSIS

Limitations of meta-analysis in general

Publication bias Research bias

Limitations, controversies and challenges in this study

Publication bias Location Language

Research bias

Inclusion other moderators Limited statistical information provided

TRANSLATING META-ANALYSIS INTO HABITAT SUITABILITY

BREAKING OVERALL SUITABILITY INTO INDICES TARGETING SPECIFIC OUTCOMES

HYPOTHETICAL PROJECT

- Example restoration scope
 - Reach length = 1 mile
 - Current riparian buffer width ~ 25 feet on left bank ٠ (representative state minimum)
- Three potential objectives and associated actions •
 - Increase stream stability: Increase to 50 ft (~15m) ٠
 - Enhance water quality: Increase to 100 ft (~30m) ٠
 - Provide habitat: Increase to 200 ft (~60m) •

Function	Description	Recommended Width ¹
Water Quality Protection	Buffers, especially dense grassy or herbaceous buffers on gradual slopes, intercept overland runoff, trap sediments, remove pollutants, and promote ground water recharge. For low to moderate slopes, most filtering occurs within the first 10 m, but greater widths are necessary for steeper slopes, buffers comprised of mainly shrubs and trees, where soils have low permeability, or where NPSP loads are particularly high.	5 to 30 m
Riparian Habitat	Buffers, particularly diverse stands of shrubs and trees, provide food and shelter for a wide variety of riparian and aquatic wildlife.	30 to 500 m +
Stream Stabilization	Riparian vegetation moderates soil moisture conditions in stream banks, and roots provide tensile strength to the soil matrix, enhancing bank stability. Good erosion control may only require that the width of the bank be protected, unless there is active bank erosion, which will require a wider buffer. Excessive bank erosion may require additional bioengineering techniques (see Allen and Leach 1997).	10 to 20 m
Flood Attenuation	Riparian buffers promote floodplain storage due to backwater effects, they intercept overland flow and increase travel time, resulting in reduced flood peaks.	20 to 150 m
Detrital Input	Leaves, twigs and branches that fall from riparian forest canopies into the stream are an important source of nutrients and habitat.	3 to 10 m

Figure: Fischer and Fischenich (2000)

WHAT IS THE ECOLOGICAL "LIFT" FROM THESE HYPOTHETICAL RESTORATION ACTIONS?

Width (ft)	Area (ac)	SI (instream)	SI (taxa)	Habitat Suitability (HSI)	Habitat (HUs)	Lift (HUs)
25 (current)	3.2	0.62	0.72	0.67	2.1	0.0
50	6.4	0.67	0.79	0.73	4.7	2.6
100	12.8	0.73	0.86	0.80	10.2	8.1
200	24.7	0.79	0.93	0.86	21.2	19.1

THANK YOU FOR YOUR TIME!

Take-away messages

- Developing a suite of riparian modeling tools applicable across a spectrum of low to high effort
- Extensive study of riparian buffers globally provides a basis for empirical thresholds in buffer width (via meta-analysis)
- A simple habitat-style model is being developed for high-level screening across sites

Upcoming Webinars!

- Jan 29: Riparian Ecosystem Function Index (REFI)
- Jan 31: Web App for Riparian Models (WARM)

Acknowledgements

- Meta-analysis team: Sam Wiest, Lee Dietterich
- Riparian team: Garrett Menichino, Darixa Hernandez-Abrams, Ella Dorfmueller, Ashlynn Clark,...

We want to hear from you!

Rosamar Ayala-Torres Vicksburg, Mississippi <u>Rosamar.Ayala-Torres@erdc.dren.mil</u>

Kyle McKay, Ph.D., P.E. New York, New York Kyle.McKay@usace.army.mil

https://emrrp.el.erdc.dren.mil/