Multi-dimensional Modeling of Interactions between Nutrients and Riparian Vegetation for Improved Riverine Ecosystem Management¹

Research Need
Current capabilities allow one to model fully mixed riverine systems with riparian vegetation growth and mortality being a function of flow and sediment. Improvements to the system will allow two-dimensional (vertically averaged) simulations, thus improving model results in large river and estuary systems, enabling modeling of interactions between flow, nutrient fate and transport, and riparian vegetation life cycles in the floodplain.

Project Objectives & Plan
The general purpose of the project is to improve the current nutrient simulation and riparian vegetation module formulations and integrate them into the latest HEC-RAS-2D program.

Riparian vegetation formulations will be improved to incorporate the effects of nutrient uptake on plant growth and mortality, thus allowing one to evaluate the effects of wetlands and backwater areas on recycling nutrients and reducing nutrient loads in downstream water bodies. These improvements in modeling capability will improve the science, economics, and decision support for ecosystem management and restoration.

The primary product of this research will be an improved HEC-RAS-2D model with more advanced nutrient and riparian vegetation dynamics. The advanced nutrient capabilities will be accomplished with updates to the Nutrient Simulation Module (NSM), and improved riparian vegetation dynamics will be accomplished through improvements to the Riparian Vegetation Simulation Module (RVSM). Technical reports, testing, validation studies, and updated versions of the HEC-RAS User’s Manual and Applications Guide will be available from the HEC web site.
Payoff
The updated HEC-RAS-2D model will support the Corps’ most pressing need for a cost-effective science-based impact assessment for ecosystem restoration and management. Because of its widespread use in flood analysis and other hydraulic studies, most large river systems as well as many smaller rivers and streams in the U.S. have already been modeled with HEC-RAS. The overall cost to stakeholders interested in modeling water quality and interactions of flow, nutrients and vegetation for improved riverine and estuarine ecosystem management and restoration is dramatically reduced due to leveraging these analyses against existing modeling efforts.

Products

Technical Reports (TRs)
Zhang and Johnson (2016) "Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module" ERDC/EL TR-16-11, US Army Engineer Research and Development Center, Vicksburg, MS

Zhang and Johnson (in press) "Aquatic Nutrient Simulation Modules (NSM) Developed for Hydrologic and Hydraulic Models", ERDC TR-XXXX, US Army Engineer Research and Development Center, Vicksburg, MS

Technical Notes (TNs)


Conference Presentations/Webinars/Workshops

Software
2D transport scheme and riparian vegetation mapping: 2D constituent transport has been implemented into HEC-RAS and has been tested.

1Project Alias – Work Unit Documentation Title: Multi-dimensional Modeling of Interactions between Nutrients and Riparian Vegetation for Improved Riverine Ecosystem Management