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EXECUTIVE SUMMARY

The total yearly volume of materials dredged by combined Corps of Engi-
neers and private operations averages about 290,000,000 m3. Pesticides and
pesticide residues, nutrients, organic wastes, heavy metals, and other contam-
inants entering our waterways may associate strongly with particulate mate-
rials and eventually accumulate in the sediments. The presence of high levels
of potentially toxic contaminants in some sediments has generated concern that
dredging operations and the disposal of dredged material may cause the deter-
ioration of the environment. Chemical residues which persist in the environ-
ment may be absorbed by plants and animals and accumulate within their tissues
to levels that are greatly in excess of the ambient concentrations in their
environment. Many of these substances have no known biological function and
could accumulate to levels that are detrimental to the organism itself, or to
its predators. Biomagnification may occur if the contaminant is persistent in
biological systems and the food pathway is essentially linear, with the pre-
dominant energy flow from lower to higher trophic levels. (The meanings of
biomagnification, bioaccumulation, and bioconcentration are defined as used in
this text.)

Although well known in terrestrial ecosystems, the occurrence of biomag-
nification in aquatic ecosystems is questionable and is the topic of consider-
able debate. The objectives of this report are multifold: review the liter-
ature on biomagnification of contaminants within aquatic ecosystems; determine
the relative importance of food as a source of contaminants in aquatic food
webs; pinpoint those contaminants which may significantly biomagnify within
aquatic food webs; indicate the gaps in existing knowledge; and provide recom-
mendations for future research on biomagnification of contaminants in aquatic
systems. This report is part of a study to assess the potential impact of the
open-water disposal of contaminated dredged material upon aquatic ecosystems
and is limited in scope to water-breathing aquatic animals.

The literature treating the bioconcentration of contaminants by and the
toxicity of contaminants to marine and freshwater organisms is voluminous, in
contrast to that regarding biomagnification. The available information sug-
gests that mercury, particularly methylmercury, may be the only heavy metal
that biomagnifies significantly within aquatic food webs. Food is also an

important source of copper, zinc, and selenium, all of which are essential



trace elements for animal metabolism, as well as arsenic, chromium, lead, and
possibly cadmium, which are not known to have any biological functions. These
metals do not biomagnify, however. Organic compounds which appear to have
significant potential for biomagnification include polychlorinated biphenyls
(PCBs), benzo[alpyrene, the naphthalenes, and, possibly, a few organochlorine
insecticides, such as dieldrin, endrin, kepone, and mirex. Relatively little
food-chain information was available for other organic compounds, however.
The data available indicate that biomagnification of contaminants in fresh-
water and marine food webs is not a dramatic phenomenon. As the biological
availability of contaminants from sediments should be similar regardless of
whether or not these sediments have been dredged and placed in an open-water
disposal site, it appears unlikely that the open-water disposal of dredged
material will have any substantial environmental impacts.

Several important ideas regarding future research efforts have surfaced
in this review and will now be summarized briefly. More emphasis needs to be
placed upon using the proper experimental design to address the problem and
upon using adequate numbers of experimental organisms to account for natural
variation in the population. The concentration of a contaminant within living
organisms should be expressed in as many ways as possible (fresh weight, dry
weight, tissue, organ, lipid, etc.) to allow valid comparison with work done
elsewhere. For the purpose of biomagnification studies specifically, the ex~
pression of contaminant concentrations on the basis of parts per million dry
weight of the whole organism (with and without gut contents, where possible)
is the most useful approach.

From the perspective of field-oriented research, a number of recommenda-
tions have emerged. Trophic levels must be precisely determined using an
accepted method, rather than by arbitrary assignment. When sampling in the
field, all possible trophic levels should be collected at a given place and
date, with a regular sampling schedule. Information on an organism's size,
age, sex, and physiological state should be recorded, if possible. Gut con-
tents should be analyzed chemically, and for species composition wherever pos-
sible. Data on physicochemical conditions should be taken at each place and
on each date. Data from on-going field studies should be compared with those
from any previous work at the same location.

Laboratory studies need to concentrate upon those compounds which have

very low water solubilities and high solubilities within specific tissue



fractions, particularly fats or lipids. Chronic exposure to contaminants
should be done at levels approximatigg those in nature and without the use of
solvents, carriers,-or chelators whichrmay enhance water solubility and bio-
logical availability. Experimental food chains should include only species
that actually are represenféfive of those found in the natural ecosystem.
Environmental conditions during éxposure must also reflect as closely as pos-
sible those actually occurring in the natural ecosystem, or the data will have
no valid application to a real system. Both the chemical species of a con-
taminant encountered in nature and its depuration following exposure must be

considered. Background levels of the contaminant in the experimental organism

~

e contaminant (in the case of

essential metals) must be evaluated in any biocaccumulation study. Finally,

when using radioisotopes to follow the movement of a contaminant in a food
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POTENTIAL FOR BIOMAGNIFICATION OF CONTAMINANTS WITHIN
MARINE AND FRESHWATER FOOD WEBS

PART I: INTRODUCTION

Background

1. Annually the US Army Corps of Engineers (CE) dredges more than
200,000,000 m3 of sediments to maintain navigable channels in the waterways of
the United States (U.S. Army Engineer Water Resources Support Center 1979).

The total yearly volume of materials dredged by combined CE and private oper-
ations averages about 290,000,000 m3 in maintenance operations and

78,000,000 m3 in new work dredging operations (Engler 1980). Pesticides and
pesticide residues, nutrients, organic wastes, heavy metals, and other con-
taminants enter our waterways from many sources, including drainage from the
land, mining operations, and waste disposal. Many of these contaminants
associate strongly with particulate materials and eventually accumulate in the
sediments. Disposal of dredged material in open water generally is convenient
and relatively inexpensive and, consequently, is used extensively by the CE
(Center for Wetland Resources 1977). The presence of potentially toxic con-
taminants in some sediments (US Environmental Protection Agency 1975a, 1975b;
Johanson and Johnson 1976) has generated concern that dredging operations and
the disposal of dredged material may cause the deterioration of the environ-
ment. The underlying basis for this concern stems from public health consider-
ations regarding human consumption of contaminated foods and the possible
environmental perturbations caused by contaminants,

2. The fate of contaminants in the environment depends upon a variety
of factors, including the chemical and physical properties of the specific con-
taminant, its residues (degradation products), and its metabolic by-products,
as well as the characteristics of the sediments with which the contaminants
are associated. Chemical residues which persist in the environment may be ac-
cumulated by plants and animals and, thus, may enter the food web. Once taken
up by a plant or animal, a chemical residue may have any of several fates: it
may be accumulated and stored in one or more tissues or organs; it may be elim-
inated actively or passively from the organism; or it may be metabolized and

its residues either stored or eliminated. The influence of a specific
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environmental contaminant on the biota depends upon both the contaminant and
the organism of concern, and may range from no apparent effect to chronic tox-
icity (long-term effect) to acute toxicity (short-term effect). The scien-
tific literature contains numerous studies on the effects of various chemicals
upon living organisms, and many volumes have been published reviewing this
subject.

3. Many chemicals are frequently present in the environment in ex-
tremely low concentrations, often below the levels readily detectable by chem-
ical and physical analytical techniques. Living organisms may accumulate
levels of these chemicals that are greatly in excess of the ambient concentra-
tions in their environment. The ability to accumulate substances from the en-
vironment is biologically significant, for this is how living organisms obtain
those substances that are commonly designated as "“essential nutrients." Non-
essential chemicals also are frequently accumulated from the environment.
These substances have no known biological function and may accumulate to
levels that are detrimental to the organism. Trace substances may enter liv-
ing organisms in several ways. Both plants and animals may accumulate these
trace substances by adsorption and absorption from the external medium (air,
soil, sediments, water). Animals also accumulate trace substances by
ingestion.

4. The relative importance of food and direct absorption from the physi-
cal environment as pathways for entrance of trace contaminants into living
organisms is the subject of considerable debate. The predominant route of en-
trance of a contaminant into a living organism depends on the nature of the
environment itself and the relative level of exposure in the food and the ex-
ternal environment. Food becomes the primary source for contaminant accumula-
tion only when direct uptake from the external environment is minimal.

Another phenomenon, food-chain concentration (Odum 1971), or "biomagnifica-
tion," may occur as the result of dietary intake of contaminants. At each
successively higher trophic level, the concentration of a substance may in-
crease as the result of dietary intake of food (prey) by a consumer (predator).
When direct uptake from the external medium is minimal, food-chain concentra-
tion of contaminants may occur if the chemical is persistent in biological
systems (Macek 1970) and the food pathway is essentially linear and highly
structured, with the predominant energy flow from lower to higher trophic

levels.
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5. Most aquatic (freshwater and marine) ecosystems are rather weakly
structured and do not have trophic levels as clearly defined as those of ter-
restrial systems. Energy flow in an aquatic food web is multidirectional, and
a large component of the energy in aquatic systems is bound within the detri-
tus. Aquatic systems also rarely meet the criterion that uptake from the ex-
ternal medium should be minimal. Contaminant levels in the water may be low,
but are usually higher than levels found in the atmosphere. In comparison to
terrestrial animals (terrestrial is extended to include all animals which
breathe air via lungs; shorebirds and "aquatic" mammals are included as a
special case of terrestrial animals living partially or wholly in water),
obligate aquatic animals (i.e., gill-breathing) also have large gill areas in
proportion to their body size. The solubility of oxygen in water, especially
seawater, is low. Therefore, ambient oxygen available for respiration is sub-
stantially less for most aquatic animals than for their terrestrial, air-
breathing counterparts. Large quantities of water must be passed over their
gill surfaces to provide adequate oxygen for respiration, simultaneously in-
creasing the contact with and uptake of both oxygen and other substances
(essential and non-essential) from the surrounding medium. The body integu-
ments of aquatic plants and animals are usually quite permeable, in direct
contrast to the rather resistant integuments of terrestrial organisms. Con-
sequently, body surfaces of many aquatic animals serve as efficient organs
through which chemicals may pass into and from their tissues. The combination
of intimate physical contact with the external medium, relatively permeable
body surfaces, respiration via gills, and a loosely structured trophic web has
led to the conclusion that trace contaminants probably do not increase nearly
as much with trophic levels (i.e., biomagnify) in aquatic systems as in non-
aquatic systems (Isaacs 1975). Diet is generally thought to be of minor impor-
tance as a source of most contaminants in the aquatic food web (Scura and
Theilacker 1977; Macek, Petrocelli, and Sleight 1979; Narbonne 1979). Unfor-
tunately, the majority of the studies on the accumulation of trace contami-
nants by aquatic animals have dealt only with uptake from the external medium.
A few have studied the uptake via food alone or via food and water combined,
without attempting to separate and critically evaluate the relative importance
of the components of the system. Most studies addressing the uptake of con-
taminants with food were not designed to demmonstrate cause and effect. The

paucity of reliable information on the subject and the tendency to assume that
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phenomena observed in non-aquatic systems occur to the same extent in aquatic
systems have led to considerable confusion and controversy. Another major
factor underlying this controversy is the inconsistent usage of the terms
"biocaccumulation," "bioconcentration,'" and "biomagnification'" (Macek, Petro-

celli, and Sleight 1979).
Definitions

6. To avoid confusion, the terms "bioaccumulation,'" '"bioconcentration,"
and "biomagnification" are defined below as used in this document. These
definitions are cited verbatim from the paper of Brungs and Mount (1978).

Bioconcentration is usually considered to be that process by
which toxic substances enter aquatic organisms, by gill or
epithelial tissue, from the water. Bioaccumulation is a
broader term in the sense that it usually includes not only
bioconcentration but also any uptake of toxic substances
through consumption of one organism. Biomagnification refers
to the resultant total process including bioconcentration and
bioaccumulation by which tissue concentrations of bioaccumu-
lated toxic substances increase as this material passes up
through two or more trophic levels.

The author acknowledges that the definitions of Brungs and Mount (1978) may
not be entirely adequate to describe all of the processes involved in the up-

take of contaminants by aquatic organisms. Other usages exist and will be

treated in the text, as necessary.

Objectives and Scope

7. The objectives of this report are fivefold:

a. Review the literature on biomagnification of contaminants within
aquatic ecosystems;

b. Assess the relative importance of food as a source of contami-
nants in aquatic food webs;

c. Pinpoint those contaminants which may substantially biomagnify
within aquatic food webs;

d. 1Indicate the gaps in existing knowledge; and

e. Provide recommendations for further research on biomagnification

of contaminants in aquatic systems, based upon the findings of
this report.
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This report constitutes a selected review of the literature on the trophic up-
take and biomagnification of contaminants through successive trophic levels
involving gill-breathing aquatic animals. It is beyond the scope of this re-
port to survey the voluminous literature treating toxicology or bioconcentra-
tion of contaminants in aquatic systems. Other literature shall be included
if it provides strong circumstantial evidence that either supports or dis-
counts biomagnification as a significant problem in the aquatic system. The
potential for biomagnification in aquatic food webs also is presumed to be
independent of the route of entry of contaminants into the primary consumer.
The consumption of aguatic organisms by humans and public health implications
will not be discussed. Contaminant concentrations in organisms are reported

on a dry weight basis unless otherwise stated.
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PART II: REVIEW OF THE LITERATURE

Heavy Metals

Cadmium

8. Cadmium in freshwater organisms. Laboratory studies suggest that

cadmium (Cd) does not biomagnify in aquatic systems, even though food may be
an important source of Cd for aquatic fauna. Hatakeyama and Yasuno (1981) fed
Chlorella sp. (phytoplankton) containing various levels of Cd to the clado-
ceran, Moina macrocopa. After 7 days of feeding on Chlorella containing

240 ppm Cd, the Cd concentration in Moina was about 85 ppm. Bioconcentration
from water containing 20 ppb was about 123 ppm in Moina after only 2 days.

The accumulation of Cd by Moina was essentially linear, whether the source of
Cd was food or the water. Hatakeyama and Yasuno (1982) extended their earlier
study to include a Cladoceran (Moina)-guppy (Poecilia reticulata) food chain
and compared the uptake of Cd from food and water. After 6 days, the biocon-
centration of Cd by the guppy from static water containing 45 ppb Cd was about
four times that for accumulation after 30 days from food (Moina) containing
171 ppm Cd. In both of these studies, the rate of uptake from water was sig-
nificantly greater than from food. No data were included to show Cd depura-
tion rates following exposure to Cd either via food or water. In a wastewater-
based, artificial food chain, Tarifeno-Silva et al. (1982) reported that
Daphnia spp. accumulated only 2 to 5 ppm Cd when fed Scenedesmus spp. contain-
ing 60 ppm Cd (Table 1).

9. Field studies also generally indicate no increase of Cd with in-
creasing trophic level. Mathis and Cummings (1973) reported Cd levels in the
Illinois River decreasing in the order sediment > annelids > clams > fishes
> water. Predatory fishes had similar or lower Cd levels than omnivorous
fishes. The Cd levels in fishes were 1 to 2 orders of magnitude lower than
those in annelids and clams. Thomann et al. (1974) developed a five-component
food-chain model of Cd for Lake Erie that included water, phytoplankton, zoo-
plankton, fish, and birds. The model indicated that Cd concentrations in-
creased with trophic level and was supported by rather limited data in which
Cd concentrations in organisms were expressed in terms of micrograms per milli-
gram of organic carbon (0C). Summary data for Cd in western Lake Erie indi-

cated Cd concentrations in goldfish, yellow perch, white bass, walleye, and
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spottail shiner averaged 1,400 (%£1100), 500 (*60), 200, 200, and 100 (*30)

Hg Cd/g tissue. The top predators (bass and walleye) in this system had lower
mean Cd levels than goldfish, which are basically omnivorous and may be prey
for the carnivores. This suggests that biomagnification of Cd does not occur.
The model developed by Thomann et al. (1974) in this paper does not consider
bioconcentration from the water and appears to be based largely on theory with-
out adequate data to support the numerous assumptions included in the model.

10. Enk and Mathis (1977) reported Cd levels in fish invertebrates,
water, and sediments from Jubilee Creek in Illinois. Table 2 shows their data
presented with the food habits of the species analyzed and indicates no cor-
relation between Cd content in tissues and trophic level. Fish contained Cd
levels similar to those in the sediments. The highest levels, 1.54 and
1.19 ppm (wet weight), respectively, for the damselfly, Agrion (predator), and
the mayfly, Isonychia (detritivore), probably were not significantly different
than those observed for the herbivorous caddisflies, Hydropsyche and Cheumato-
psyche. Since the insects all contained significantly greater Cd concentra-
tions than did the fish, and predatory fish had similar Cd levels as other
fish, one can conclude that food contributed relatively little to the Cd body
burden of the fish.

11. Anderson (1977) studied the bioaccumulation of Cd in 21 genera of
freshwater invertebrates collected in the Fox River, Illinois. Largely pre-
daceous insects (Odonata, Hemiptera, and Coleoptera) contained <0.5 ppm Cd,
whereas filter-feeding, detritivorous, and omnivorous benthic invertebrates
(insects, molluscs, and crustaceans) generally had substantially greater Cd
levels (Table 3). One leech, Erpobdella, had 3.80 * 0.30 ppm Cd, while
another, Placobdella, had <0.5 ppm Cd.

12. Cherry and Guthrie (1977) measured the concentrations of Cd in
water, sediments, and organisms before and after dredging an ash basin in
South Carolina. The order of increasing mean Cd concentrations before dredg-
ing was water < vertebrates < plants < sediment < invertebrates. Following
dredging, the concentrations of Cd decreased in all biota, approximately
doubled in the sediments, and remained approximately the same in the water.
Valid conclusions are difficult to make from these data, as the biotic compo-
nents did not constitute a logical food chain.

13. Kneip and Hazen (1979) investigated the deposition and mobilization

of Cd in a marsh-cove ecosystem in connection with dredging of Cd-contaminated
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sediments in the vicinity of a nickel-cadmium battery plant. The general
order of increasing Cd concentration was fish < amphipods < macrophytes
< plankton < sediments. From comparisons of organ-burden distributions for
field-captured Fundulus diaphanus and "implanted" goldfish (Carassius auratus)
with laboratory data, they concluded that food must be a major route of Cd
exposure for fish under field conditions. Although they reported the concen-
trations of Cd in the food and water were 24 pg/g and 250 ug/2, respectively,
they neither reported concentrations in tissues nor gave information on the
methodology used to compare the ingestion of Cd in food with bioconcentration
from water.

14. May and McKinney (1981) reported Cd in fish varying from <0.01 to
1.04 ppm. The higher value was for carp (benthic omnivore) collected in the
Des Moine River at Keosauqua, Iowa; walleye (predator) caught at this location
contained <0.05 ppm Cd, however.

15. Cadmium in marine organisms. Laboratory studies by Boothe and

Knauer (1972) suggested that fecal material could have an important role in
the "biological amplification' of trace metals in the marine environment.
Feces from crabs (Pugettia producta) fed exclusively on the Cd-contaminated
alga, Macrocystis pyrifera, contained only 13 percent of the Cd ingested, how-
ever. The fate of the remaining 87 percent of the Cd ingested is uncertain,
suggesting either retention in the crab or excretion through a means other
than in feces. Pentreath (1977) examined the uptake of Cd from 115Cd-labelled
seawater and food (Nereis) by plaice (Pleuronectes platessa) and thornback ray

(Raja clavata). Uptake of 1150d from water containing 2 g Cd/£ was very slow

and linear with time in both species. Plaice and rays fed a single 115Cd-
labelled Nereis at day 0 and one unlabelled Nereis daily beginning at day 6
retained about 4 and 17 percent (indicated by Pentreath; his data showed about
30 percent) of the ingested 1150d after 41 days. Pentreath indicated that
"both species retained cadmium from food and accumulated it in the liver" and,
further, that uptake from seawater was less important for the ray than for
115¢4 or cd in

the labelled Nereis, but only indicated that the Cd level in unlabelled Nereis

plaice. Pentreath did not specify the concentrations of either

was about 0.1 pg Cd/g wet weight. Consequently, the author of the present re-
view could not follow Pentreath's reasoning and was unable to find any clear
comparison between food and water as routes of entry of Cd into either species.

16. Analyses of field-collected organisms generally have shown no
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biomagnification of Cd in marine food webs. Preston et al. (1972), however,
found that concentrations of Cd in a limpet (Patella sp.) exceeded those in
algae (Porphyra spp. and Fucus spp.). The concentrations of Cd varied from
2.8 to 23 ppm in Porphyra, and 0.5 to 3.0 ppm in Fucus (Table 4). This
implied possible trophic movement and potential biomagnification of Cd, pro-
vided the limpets actually were feeding on the algae (not indicated by the
authors). Leatherland et al. (1973) reported Cd concentrations in fish and
various invertebrates ranging from 0.05 pg/g in muscle of the skipper (Scom
bresox saurus) to 13.0 pg/g in two decapod crustaceans (Systellaspis debilis
and Oplophorus sp.). The lowest trophic levels (according to the authors)
were represented by an omnivorous euphausiid (Meganyctiphanes norvegica) and
an herbivorous tunicate (Pyrosoma sp.) containing 0.25 and 0.44 pg Cd/g,
respectively (Table 5). There was no discernible relationship between Cd con-
centration in tissues and trophic level.

17. 1In a turtle grass (Thalassia testudinum) community in Card Sound,
Florida, Gilio and Segar (1976) found no indication of increased Cd concentra-
tion with increasing trophic levels. The ranges of mean Cd concentrations
were 0.11 (20.012) to 0.20 (*¥0.047) in macrophytes, 0.20 in phytoplankton and
in epiphytes on Thalassia leaves, 0.19 (%0.08) in combined detritivores and
carnivores, and 0.44 (*0.18) in sponges (Table 6). The higher levels of Cd in
sponges (filter-feeders) suggest that food (phytoplankton) may be the source
of Cd in sponges, but differences do not appear to be statistically signifi-
cant. A compartment model for trace elements showed that total Cd load in-
creased from biota to water to sediments. A similar study by Talbot and Cheg-
widden (1982) measured levels of Cd in seagrasses (Posidonia sp.) and their
epiphytes, sea lettuce (Ulva lactuca), mussels (Mytilus edulis), oysters
(Ostrea angasi), polychaete worms (Chaetopterus variopedatus), and crabs (Por-
tunus pelagicus). A comparison of the data collected at the same stations
reveals that the concentrations of Cd in mussels and polychaetes are similar,
whereas those in crab (hepatopancreas) are about an order of magnitude greater
(Table 7). On the basis of Cd in flesh (muscle), the crabs also had similar
Cd levels as did mussels and polychaetes, however. As mussels often are part
of the diet of crabs, mussels may have contributed to the Cd content of the
crabs. The Cd concentrations in the seagrasses and their epiphytes and in sea
lettuce were generally less than or equal to those in the invertebrates.

Amiard et al. (1980) reported that there was no evidence for biomagnification
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of Cd within an estuarine food web. Cadmium concentrations were greater in
crustaceans than in whole fish (Table 8). Gut contents of fish contained sig-
nificantly greater Cd levels than did whole fish (gut contents excluded), and
Cd was more concentrated in the intestines than in the stomach. The authors
stated that this was the result of 'faeces enrichment by unassimilated metals."
On the basis of fresh weights and dry:fresh weight ratios given by the authors,
the reviewer calculated the percent total body burden of Cd contained within
the gut for each organism for which gut concentrations were given. These data
indicated that 90 percent of the total body burden of Cd was in the tissues
and only 10 percent was in gut contents. The percent of total body burden of
Cd contained in the stomach was approximately equal to that in the intestine,
however, suggesting that little Cd was absorbed in the stomach.

18. Others have attempted to relate Cd levels to feeding habit. Bryan
and Hummerstone (1977) showed no clear relationship between feeding habit and
Cd concentration in several marine gastropods, pelecypods, and one polychaete.
The concentrations of Cd in the deposit-feeding polychaete (Nereis versicolor),
deposit-feeding pelecypods (Scrobicularia plana and Macoma balthica), filter-
feeding pelecypods (Cerastoderma edule and Mytilus edulis), and an herbivorous
gastropod (Littorina littorea) were not greatly different than that in the
brown alga, Fucus sp., but all were substantially elevated in contast to the
level of Cd in the sediments (Table 9). Cadmium levels in the limpet, Patella
vulgata (herbivore), and the dogwhelk, Nucella lapillus (predator), were sub-
stantially elevated over those in the other species and averaged 8.6 and
12.8 ppm, respectively (Table 10). Cutshall, Naidu, and Percy (1977) sug-
gested that Cd in Pacific hake (Merluccius productus) reflected its diet,
primarily euphausiids, which contained "relatively high contents of" Cd. Cad-
mium levels in hake muscle and whole fish averaged 0.03 and 0.12 ppm, respec-
tively, and, in euphausiids, 0.23 ppm. These data suggest that the trophic
transfer of Cd from euphausiids to hake was minimal. The data for Cd in hake
and euphausiids were collected separately, however. Consequently, the authors’
suggestion of a diet-related source of Cd for Pacific hake must be accepted
with reservation. Cadmium analyses of pink shrimp (Pandalus jordani) and sev-
eral other fish species showed no pattern with respect to feeding habit and
suggested that biological magnification of Cd was unlikely, as levels in the
euphausiids consistently exceeded those in the fish.

19. Recent studies have used the cesium:potassium (Cs:K) ratio to rank
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g to trophic levels. Young and Mearns (1979) mea-

sured Cd levels in the biota of the Salton Sea and two marine food webs along
the coast of California. The Cd concentrations did not increase with trophic

v in any of these

h

ood webs (Table 10). Si rly, Schafer et al. (1982)

examined the Cd concentrations in organisms of different trophic levels in a

coastal pelagic and an epibenthic food web and found no evidence for biomagni-
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ication of Cd in either instance (Table 11). In the epibenthic food web, Cd

=

levels were greatest in the sediments, decreased in mysids and decapods, and
further decreased in several species of fish and in ridgeback prawn. In the
pelagic food web, zooplankton had the highest Cd levels, followed by squid and
anchovy (0.172). The lowest value observed was 0.004 ppm in the white shark,
the top predator in this food web.
Tin

20. Very little information is available on tin (Sn) in aquatic food
webs. A laboratory study (Tarifeno-~Silva et al. 1982) indicated that the con-
centration of Sn decreased in the order algae > microcrustaceans > fish in a
wastewater-based artificial food chain (Table 1). The algae Scenedesmus spp.
and two microcrustaceans, Daphnia magna and D. pulex, averaged 70, 30, and

0.6 ppm, respectively. Golden shiners (Notemigonus chrysoleucas) and fathead

minnows (Pimephales promelas) maintained for 7 weeks on ed diets of the two

species of daphnids averaged 3.91 and 3.63 ppm Sn, respectively.

21. Jenkins (1976) briefly lists data (compiled from numerous other

cfnﬂ1nc\ on the maximum

,,,,,,, on ¢imum concentrations of metals re isms and

then computes an enrichment factor. Maximum concentrations of Sn reported

were 3.8, 2.3, 32, 15, and 5.4 ppm (wet weight), respectively, for algae,

relative enrichment factors computed for Sn in marine organisms were 0.43, 3.5,
and 0.5, respectively, for algae, invertebrates (excluding molluscs), and fish.
Phillips et al. (1982) reported that Sn concentrations were <5.0 ppm in fish,
molluscs, and crustaceans obtained from retail markets in Hong Kong. Maximum
values of 13.8 and 17.4 ppm Sn, respectively, were reported for samples of
lobsters and crabs in the market at Lau Fau Shan on 20 January 1978. These
data are insufficient to make valid conclusions about the potential for bio-
magnification of Sn in aquatic food webs, however.

Selenium

22. Relatively little information is available on the uptake of
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selenium (Se) from food in aquatic food webs. The contribution of gut con-
tents to the total body burden of Se in the detritus-feeding larvae of a crane-
fly (Tipula sp.) was examined by Elwood, Hildebrand, and Beauchamp (1976).

The Se concentrations in whole larvae, larvae following evacuation of gut con-
tents, and feces were 1.02, 0.95, and 0.99 ppm, respectively (Table 12). Sele-
nium in the gut contents represented 23 percent of the total body burden. The
concentration of Se in leaf detritus was 0.49 ppm. A trophic transfer factor

Se in larvae with gut evacuated
Se in leaf detritus

calculated by Elwood, Hildebrand, and

Beauchamp (1976) was 1.9, suggesting that food-chain enrichment (biomagnifica-
tion) of Se might occur. A valid conclusion was difficult to attain without
information for higher trophic levels, but food did appear to be an important
source of Se in Tipula larvae. Cherry and Guthrie (1977) reported that Se was
biomagnified by organisms in an ash basin. The order of mean increasing con-
centrations of Se was water < plants < invertebrates < sediments < vertebrates
(Table 13). Each group of biota was mixed in terms of types of organisms in-
cluded: plants included varied from algae to trees; invertebrates varied from
midges to crayfish; vertebrates included were mosquitofish (Gambusia affinis)
and frog tadpoles (Rana sp.). The authors' conclusion of biomagnification of
Se was greatly compromised by the inclusion of organisms that did not consti-
tute a logical food chain and, consequently, must be accepted with reservation.
In a compendium of data collected for the National Pesticide Monitoring Pro-
gram during 1976-1977, May and McKinney (1981) found no pattern to suggest any
relationship between Se concentration in fish and presumed trophic level. Con-
centrations of Se in fish varied widely with location, and only rarely were
more than two species analyzed from the same area. The Se concentrations re-
ported ranged from <0.05 ppm in Klamath sucker to 2.87 ppm in goldeneye. Us-
ing Cs:K ratios to estimate trophic level, Schafer et al. (1982) found no rela-
tionships between Se concentrations in biota and position in the food web
(Table 11). 1In a tropical pelagic food web, Se concentrations ranged from
0.82 ppm in zooplankton to 0.96 ppm in the silky shark, the top predator exam-
ined. In a coastal pelagic food web, Se levels were 0.45 and 0.48 ppm, respec-
tively, in the white shark (top predator) and zooplankton. The highest levels
reported were 1.15, 2.11, and 2.16 ppm, respectively, in jack mackerel, bonita,
and squid, all of which fell in the intermediate trophic levels.

23. Although the data available suggest that Se may be obtained from
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food by aquatic animals, it is doubtful that biomagnification occurs in aqua-
tic food webs.
Silver

24. Very little information is available related to the potential for
the biomagnification of silver (Ag) in aquatic food webs. Preston et al.
(1972) compared the concentrations of Ag in seawater, two species of algae
(Fucus vesiculosus and Porphyra umbilicalis), and in herbivorous limpets
(Patella vulgata). The average Ag concentration in limpets was an order of
magnitude greater than those in the algae (Table 4), which suggests that Ag
could possibly biomagnify. The authors indicated that the limpets were col-
lected from rocks, however, suggesting that the food source was more likely
epilithic organisms than the macroalgae. Data reported by Bryan and Hummer-
stone (1977) did not show any biomagnification of Ag in the Looe Estuary
(Table 9). The predatory dogwhelk (Nucella lapillus) contained an average of
2.7 ppm Ag, in comparison with the herbivores Patella vulgata (limpet) and
Littorina littorea (periwinkle), which averaged 3.0 and 19.6 ppm Ag, respec-
tively. Deposit-feeders, particularly clams, contained substantially higher
levels of Ag than the dogwhelk, limpet, or filter-feeders. Rice, Tenore, and
Windom (1981) reported that Ag concentrations in deposit-~feeding polychaetes
(Capitella capitella) decreased with increasing detrital rations. Detrital
rations were expressed as g nitrogen (N) m_2 day-l. Initial Ag concentrations
in the worms, Ascophyllum detritus, and Gracilaria detritus averaged 0.78
* 0.04, 0.28 £ 0.03, and 0.19 * 0.02 ppm, respectively. At detrital rations
of approximately 0.05 and 0.10 g N m_2 day-l, respectively, worms fed either
Gracilaria detritus or Ascophyllum detritus contained approximately 2.1 and
0.5 ppm Ag. The authors stated that the decrease in the uptake of Ag by the
worms with increasing detrital ration was due to "increased reworking of the
total benthic trace metal pool (food, sediments, water) by larger populations
of C. capitata." The meaning of their statement is unclear, however. Presum-
ably, they meant that the apparently greater uptake at the lower detrital
rations was the result of more efficient extraction of Ag from the detritus,
as the worms would have had to reprocess the detritus more extensively to ob-
tain adequate food (inital worm biomass:detrital ration ratio was greater at
the lower detrital ration). Then, at higher detrital rations (i.e., lower
initial worm biomass:detrital ratio), the worms apparently had more food and

did not have to reprocess the detritus extensively, resulting in depuration of
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Ag instead of uptake. The relative uptake of Ag from food by detritus-feeding
polychaetes, therefore, appears to be dependent upon the amount of reprocess-
ing of the detritus.

25. Using Cs:K ratios to rank organisms within trophic levels, Young
and Mearns (1979) found no increase in Ag concentration with increased trophic
levels (Table 10). In the Salton Sea and Newport Bay food webs, Ag levels
were relatively stable (0.002 to 0.003 ppm) across all trophic levels. The Ag
levels in the Palo Verdes food web varied from <0.003 ppm in scallops to
0.095 ppm in the yellow crab. The highest and lowest trophic levels were rep-
resented by bocaccio and abalone, respectively, and contained 0.008 and
0.028 ppm Ag. Similar studies by Schafer et al. (1982) demonstrated no rela-
tionship between trophic level and Ag concentration in California coastal
pelagic or epibenthic food webs (Table 11). The Ag concentrations in the epi-
benthic food web were 0.167 ppm in mysids and decapods (lowest trophic level)
and <0.001 to <0.002 at all other trophic levels. In the pelagic food web,
the highest levels of Ag were 0.12 ppm in squid (an intermediate trophic
level) and 0.004 ppm in the white shark (top predator). These data suggest
that biomagnification of Ag over several trophic levels does not occur in
aquatic food webs.

Nickel

26. Laboratory studies suggest that some uptake of nickel (Ni) from
food may occur, but biomagnification of Ni probably does not occur. Rice,
Tenore, and Windom (1981) reported that Ni concentrations in the deposit-
feeding polychaete worm, Capitella capitata, decreased with increasing detri-
tal ration of the seaweeds, Gracilaria foliifera and Ascophyllum nodosum.
Initial Ni concentrations in worms, Gracilaria detritus, and Ascophyllum detri-
tus, were 7.3, 2.4, and 13.1 ppm, respectively. Worms fed for 90 days on
Ascophyllum or Gracilaria detritus rations of approximately 0.05 and 0.10 g
N m”2 day_1 contained 14 and 8 ppm Ni, respectively. Increased Ni uptake at
lower detrital rations probably was due to reprocessing of the detritus by the
worms, as discussed previously in the Ag section. Data for algae (Scenedesmus
sp.), cladoceran crustaceans (Daphnia magna and D. pulex), and fish (Notemig-
onus chrysoleucas and Pimephales promelas) raised in wastewater-based artifi-
cial food chains suggest that Ni is probably not biomagnified in freshwater
food webs (Tarifeno-Silva et al. 1982). The Ni concentrations in algae, D.

magna, D. pulex, and in muscle tissue of N. chrysoleucas and P. promelas
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averaged 15, 3, 1.7, 4.45, and 2.71 ppm, respectively (Table 1). Total body
burdens of Ni in the fishes were not given.

27. There is some evidence for the uptake of Ni under field conditions.
Preston et al. (1972) indicated that the Ni concentrations in the limpet,
Patella vulgata, were generally higher than those in macroalgae, Porphyra um-
bilicalis and Fucus sp. (Table 4). These data suggest that Ni could be bio-
magnified in the limpet, providing the limpets actually fed on Porphyra. As
the authors stated that the limpets were collected from rocks, one cannot con-
clude that Ni was biomagnified. Kay and Rojanavipart (1976) reported that Ni
concentrations in the periwinkle (Littorina littorea) were elevated in compar-
ison with those in the stems and leaves of common cord~grass (Spartina an-
glica), common saltmarsh-grass (Puccinellia maritima), and a dwarf shrub
(Halimione portulacoides). Periwinkles commonly feed on the epiphytes and oc-
casionally on saltmarsh vegetation, such as these species. The Ni concentra-
tions in periwinkles were similar to those in macroalgae (Fucus sp.) and detri-
tus and lower than those in the sediments. The relative contributions of the
direct uptake of Ni from the environment (e.g., through the foot from the sedi-
ments or detritus) and uptake via food could not be determined.

28. Other field studies indicate that there is little movement of Ni
through increasing trophic levels and that biomagnification of Ni probably
does not occur within aquatic food webs. Mathis and Cummings (1973) reported
that the order of increasing Ni content in the Illinois River was water < car-
nivorous fishes < omnivorous fishes < clams < tubificid worms < sediment
(Table 14). Nickel appears to remain closely associated with the sediments
and less so with the water column. Jenkins (1976) compiled from the litera-
ture the maximum concentrations of Ni in biota and calculated "maximum enrich-
ment factors" for Ni in marine organisms. The enrichment factors (relative to
an average Ni concentration of 2 ppb in water) were 3,000, 6,500, 2,500, 7,900,
and 300, respectively, for algae, zooplankton, invertebrates (except molluscs),
molluscs, and fish. Bryan and Hummerstone (1977) found that the predatory dog-
whelk (Nucella lapillus) contained similar Ni concentrations (Table 9) as
those in herbivorous gastropods (Littorina littorea and Patella vulgata), a
filter-feeding mussel (Mytilus edulis), and a deposit-feeding polychaete worm
(Nereis diversicolor). The Ni concentrations in brown algae (Fucus sp.) were
higher than those in the herbivorous gastropods and similar to those in

deposit-feeding clams (Scrobicularia plana and Macoma balthica). MHighest Ni
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levels were found in a filter-feeding cockle (Cerastoderma edule), which con-
tained Ni concentrations similar to those of the sediments. Thus, there was
no apparent relationship between Ni concentrations and feeding habit and no
trend toward biomagnification of Ni in this food web.

29. Using Cs:K ratios to establish trophic levels, Young and Mearns
(1979) demonstrated no trend toward biomagnification of Ni in any of three
saltwater food webs (Table 10). In the Salton Sea and Newport Bay food webs,
Ni concentrations averaged <0.03 to <0.04 ppm. In the Palo Verdes food web,
the highest Ni level (0.68 ppm) was found in abalone, the lowest trophic level
in this food web. Using similar techniques, Schafer et al. (1982) found that
the concentrations of Ni in an epibenthic and a coastal pelagic food web
(Table 11) were lower in the top carnivores than in lowest trophic levels. In
the pelagic food web, white sharks and zooplankton contained <0.019 and
0.294 ppm, respectively. In an epibenthic food web at Palos Verdes, Ni con-
centrations in scorpionfish and combined samples of mysids and decapods were
<0.030 and 1.07 ppm, respectively. The Ni levels in intermediate trophic
levels varied somewhat, with no pattern to suggest any relationships to feed-
ing habits.

Arsenic

30. Arsenic in freshwater organisms. Information on arsenic (As) in

freshwater food chains is rather limited, but the available data suggest that
As does not biomagnify. Cherry and Guthrie (1977) reported the concentrations
of As in water, sediments, and biota in a coal ash basin before and after
dredging (Table 13). Prior to dredging, the As concentrations decreased with
increasing trophic level. Following dredging, As levels in plants remained
approximately constant, but those in invertebrates and vertebrates increased
about 30-fold and 8-fold, respectively. The importance of trophic intake and
potential for biomagnification of As could not be determined, as the organisms
included did not form a logical food chain. May and McKinney (1981) reported
As levels in freshwater fish ranging from 0.05 to 2.92 ppm (wet weight) and
averaging 0.27 ppm. Arsenic levels varied widely with location, with no dis-
cernible relationship between tissue concentrations and presumed trophic
levels. At stations where species sampled represented several obvious trophic
levels, As levels were generally lower at the upper trophic level, suggesting
that As does not biomagnify in the food chain.

31. Arsenic in marine organisms. Laboratory studies indicate that As

26



may be absorbed
that fecal concentrations of arsenic in crabs feeding on algae were elevated
in comparison to those in the algae. The theoretical retention of As in fecal
pellets was about 32 percent (Table 15), suggesting that As might be readily
assimilated into the crabs. The concentration of As in the crabs and the
total consumption of algae by the crabs were not indicated, however. Conse-
quently, no valid conclusions can be made from this study either on bioaccum-
ulation or biomagnification of As. Klumpp (1980) studied As accumulation from
food and water and the subsequent depuration of As by periwinkles (Littorina
e FA

littoralis) and dogwhelks (Nucella lapillus) using ' As. Periwinkles exposed

ined 20 percent of the 74Aq activ=-
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ity in the foot-buccal mass, 80 percent in digestive glands and gonads, and
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none of the ' 'As in the shell and operculum. Exposure of periwinkles to ' As
via water resulted in about 1 percent of the 74As activity in the operculum,

9 percent in the shell, 4 percent in the foot-buccal mass, and the remainder

in the digestive gland and gonads. The specific /qu activity in periwinkles
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water-labelled and food-labelled periwinkles was dependent on food consumption
during the depuration period. Periwinkles fed unlabelled food (Fucus) during
depuration lost about 45 to 50 percent of their total 74As activity in con-
trast to about 15 percent loss in those which were unfed during depuration.

In the predatory dogwhelk (Nucella lapillus), the contribution of 7[’As uptake
from water to the total As pool in the whelks was small, in comparison with
uptake from labelled food (i.e., periwinkle). The authors calculated that
about 0.8 percent of the total As pool of the whelks would come from direct
absorption from water containing 3 ppb As. No account was made for possible
direct As absorption through the foot of either species, however. The data do
suggest strongly that contaminated food may be an important route for As entry

into the lower trophic levels of marin

e food webs.

32. Field studies generally have indicated no relationship between tro-
phic level and As concentration in organisms, however. Leatherland et al.
showed no particular pattern with respect to trophic levels. Euphausiids and

ro

us tunicate, representing the lowest trophic level, and a shark,



intermediate trophic levels had As content ranging from 2.5 to 30 ppm. Jenkins
(1976) averaged data from the literature for maximum As concentrations in aqua-
tic organisms and calculated enrichment factors for marine organisms. The
maximum As levels increased in the order: fish < higher plants < algae < in-
vertebrates. With respect to a mean As concentration of 2 ppb in the ocean,
the 'maximum enrichment factors" for marine algae, fish, invertebrates (except
molluscs), and molluscs were 75,000, 10,000, 36,000, and 40,000, respectively.
Greig et al. (1977) examined the occurrence of trace metals in marine organ-
isms at dredged material ocean disposal sites (Table 16). Arsenic concentra-
tions in crabs and in flounder at the Delaware site were 1.9 and 1.8 ppm,
respectively. The As content in different organisms varied with location.

The lowest levels reported were 1.3 ppm in muscle of clams at the control site

(Chincoteague Inlet) and 1.4 ppm in flesh of flounder at the New York Bigh
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dumpsite. The maximum As level reported was 9.0 ppm in the muscle of chan-

neled whelks (predatory) at Long Island Sound. The data in this study were

dumping sites.

33. Edmonds and Francesconi (1981) measured As levels in marine organ-
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plants, fish (Sillago bassensis), fish gut contents (largely polychaete
worms), and polychaete worms ranged from <0.1-15.9, 3.2-14.5, 1.3-31.3, and

s 1.1

.1-23.0 ppm, respectively (Table 17). The authors imply a possible trophic

~J

relationship between As in the plants and As in the fish: plant »> detritus

> worms + fish. The fish, however, fed primarily on polychaetes, some of
which (according to the authors) were not detrital feeders. The data were in-
adequate to allow any valid conclusions as to the source of As for the fish.
Using the Cs:K ratios to determine trophic levels, Schafer et al. (1982) found
that As levels were elevated in sharks at the upper trophic levels (Table 11).
In a coastal pelagic food web, the As levels in white sharks and mako sharks
were 3.18 and 3.53 ppm, respectively. The two lowest trophic levels, anchovy

and zooplankton, contained 1.66 and 1.32 ppm As, respectively. Arsenic in

dines. A similar pattern was observed in a tropical pelagic food web, where

As levels in silky sharks were 4.1 ppm. The authors indicated that, when the



concentrations and trophic level in either food web. These data suggest that
food may be an important route of As uptake in the large, predatory sharks.
Otherwise, there were no clear indications of the biomagnification of As in
marine food webs.

Chromium

34. Chromium in freshwater organisms. Laboratory data indicate that

very little chromium (Cr) is absorbed from food by freshwater animals.

Patrick and Loutit (1976) reported that tubificid worms could accumulate Cr by
the ingestion of contaminated bacteria (Table 18). Worms fed for 7 days on
bacteria containing 109, 983, and 2,850 ppm Cr and allowed to depurate 24 hr
to evacuate gut contents accumulated only 3.9, 14.1, and 29.9 ppm Cr, respec-
tively. The concentrations of Cr in the worms represented only 1.1 to

3.5 percent of the levels in the bacteria, and only those worms fed on bac-
teria containing the highest Cr levels contained more Cr than the original
field-collected worms. Elwood, Hildebrand, and Beauchamp (1976) demonstrated
that gut contents represent a substantial portion of the body burden of Cr in
detritus-feeding Tipula sp. larvae (Table 12). The concentrations of Cr in
the larvae were about one third of that in leaf detritus. The concentration
of Cr in the feces was similar to that of the leaf detritus, however. Chrom-
ium concentrations in the larvae also did not change significantly following
gut evacuation, suggesting that relatively little Cr was absorbed from the
food. Magnuson et al. (1980) studied the uptake of Cr by crayfish fed leaf
discs containing approximately 450 ppm Cr. After 8 weeks of feeding, the mean
Cr concentration in the crayfish was about 40 ppb. The authors reported that
the crayfish retained only 1.72 percent of the total Cr ingested during the
8-week feeding period. Tarifeno-Silva et al. (1982) fed cladoceran crusta-
ceans (Daphnia sp.) on the unicellular green alga, Scenedesmns spp., in an Fe-
enriched wastewater effluent. The Cr levels in water, algae, D. magna, and D.
pulex, were 0.01, 13, 3, and 8 ppm, respectively. Although the relative impor-
tance of Cr uptake from the water and food was difficult to discern, Cr ob-
viously did not biomagnify in this single-step food chain.

35. Field studies seem to confirm that trophic transfer of Cr does not
occur in freshwater ecosystems. Mathis and Cummings (1973) reported the
levels of Cr in water, sediments, and biota from the Illinois River. The Cr
concentrations decreased in the order sediments > tubificid worms > clams

> fishes (Table 14). Similar Cr levels were found in both predatory and
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omnivorous fishes. Cherry and Guthrie (1977) demonstrated a slight increase
of Cr concentrations from plants to aquatic invertebrates both before and
after dredging a coal ash basin (Table 13). Before dredging, average Cr
levels in vertebrates were only a third the levels in the invertebrates. Fol-
lowing dredging, however, Cr doubled in vertebrates and decreased in both
plants and invertebrates. After dredging, Cr levels in the vertebrates were
about twice those in either plants or invertebrates, very likely as the result
of increased exposure via suspended sediments. Biomagnification of Cr proba-
bly did not occur. No valid conclusion can be made as the organisms did not
constitute a logical food chain.

36. Chromium in marine organisms. Laboratory work with marine inverte-

brates indicates some possible uptake of Cr from foods. Preston (1971) used
radioactive 51Cr to examine the relative roles of food and direct absorption
in the uptake of Cr by oysters (Crassostrea virginica). Oysters were exposed
in a closed system without renewal of 510r sources to 50 microcuries 51Cr per
liter (pc/4) in artificial seawater or in a suspension of the green microalga,
Chlamydomonas sp., previously labelled for 5 days with 51Cr to provide

50 pc 51Cr/2 associated with algal cells. After 110 hr of contact, the accumu-
lations of 51Cr by oysters were about 1,100 DPM (disintegrations per minute)
and 300 DPM, respectively, for uptake from water and food. The distribution
of 51Cr in different tissues was similar, regardless of route of entry. The
authors acknowledged that leakage from algal cells probably provided a portion
of the 51Cr absorbed from the food, but suggested that food might be a more
important source of 510r in nature, however, as "radioactivity is likely to be
greater in the food supply than in the water since most organisms tend to con-
centrate radionuclides." Boothe and Knauer (1972) suggested that food may be
important in the transfer of Cr within marine food webs. Crabs (Pugettia pro-
ducta) fed exclusively on the brown alga, Macrocystis pyrifera, contained sim-
ilar Cr concentrations in their feces as in their food source (Table 15). Of
the calculated theoretical total weight of metal ingested, only 11 percent
remained in the feces. This implies that about 89 percent had been retained
within the crabs, but does not account for other potential routes for loss of
Cr. The Cr concentrations in the crabs were not reported. Although both of
these laboratory studies suggest uptake of Cr from food, neither provides evi-

dence that biomagnification of Cr occurs.

37. Field studies, however, suggest that very little Cr is passed on
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through food. Jenkins (1976) calculated enrichment factors (as compared to
seawater) for Cr in different groups of marine organisms. These factors were
17, 25, 25, 320, and 2.5, respectively, for algae, zooplankton, invertebrates
(except molluscs), molluscs, and fish. These data imply that some Cr enrich-
ment occurs at the lower trophic levels, but little transfer of Cr to the up-
per trophic levels will occur. A study of Cr in sediments and biota of the
Looe Estuary suggests that some Cr may be taken in via food, but biomagnifica-
tion probably does not occur within this marine food web (Bryan and Hummer~
stone 1977). The mean concentrations of Cr were highest in the sediments,
followed by deposit-feeding clams, algae, the predatory dogwhelk, filter-
feeders, herbivores, and a deposit-feeding polychaete worm (Table 9). No data
were available for Cr in biota in higher trophic levels. Greig et al. (1977)
reported Cr levels in biota and sediments at several ocean dumping sites for
dredged material (Table 16). Chromium was more concentrated in the gills of
crabs than in other organs. Within a single site, concentrations of Cr in the
flesh of different organisms were quite similar, suggesting that Cr does not
biomagnify within the food web. Heavy metals were examined in fishes from the
Chao Phraya River Estuary in Thailand (Polprasert 1982). The average Cr con-
centrations reported for trophic levels III and IV were 9.55 and 12.27, respec-
tively. Polprasert contended that this represented "possible biomagnification"
of Cr. The ranges of Cr concentrations were 0.92 to 48.64 ppm at level III
and 1.35 to 40.68 at level IV. Many species were included in the study, with
no reference either to feeding habits or to how trophic levels were assigned.
The data as presented by the authors appear inadequate to make any statements
concerning the possible occurrence of biomagnification of Cr. Chromium was
reported in trace quantities in fish and shellfish from Hong Kong (Phillips
et al. 1982). Fish contained from <0.1 to <0.5 ppm Cr. Higher levels were
reported for bivalve molluscs (<0.1 to 1.5 ppm), gastropod molluscs (<0.1 to
1.4 ppm), and crabs (<0.1 to 0.9 ppm), depending upon location (Table 19).
The Cr concentrations did not increase with presumed trophic level.

38. The concentrations of Cr in three saltwater food webs were studied
using Cs:K ratios to assign the trophic levels (Young and Mearns 1979).
Table 10 shows that Cr concentrations were similar in fishes from different
trophic levels in the Salton Sea and Newport Bay food webs. In the Palos
Verdes food web, the highest Cr levels were in molluscs and crabs, with lower

levels in prawns and fishes. There was no tendency for Cr to biomagnify in
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any of these food webs. A similar study was undertaken on a pelagic and an
epibenthic food web (Schafer et al. 1982). 1In the coastal pelagic food web
white sharks and zooplankton had 0.145 and 0.114 ppm Cr, respectively, with
lower levels in all other organisms (Table 5). In the epibenthic Palos Verdes
food web, sediments contained 802 ppm Cr, whereas the highest levels in the
biota were 1.77 and 0.188 ppm, respectively, in mysids/decapods and prawns.
There were no trends toward biomagnification of Cr in either food web.

Copper

39. Copper in freshwater organisms. Results from laboratory food chain

work suggest that food may be a major source of copper (Cu) for aquatic organ-
isms’, but biomagnification of Cu probably does not occur. Cowgill (1976)
studied the uptake of Cu by Daphnia spp. in an artificial food chain. Under
these laboratory conditions, biomagnification did not occur. Daphnia pulex
and D. magna periodically fed Euglena gracilis and mixed algal cultures con-
tained similar or lower levels of Cu than did the algal cultures (Table 20).
Both the algae and Daphnia were grown (separately) in spring water. No
attempt was made to isolate uptake from food from bioconcentration from the
water. In another food-chain study, Cu concentrations decreased with in-
creasing trophic level (Tarifeno-Silva et al. 1982). Microcrustaceans
(Daphnia magna and D. pulex) were fed exclusively on green algae (Scenedesmus
spp.) grown in and harvested from Fe-enriched wastewater effluent. The
Daphnia were then fed to the fish. The concentrations of Cu in algae, micro-
crustaceans, and fish were 200, 30 to 60, and 2.54 to 3.27 ppm, respectively
(Table 1). A similar food-chain study was conducted using tubificid worms fed
for 7 days exclusively on bacterial cultures previously exposed to Cu for

10 days (Patrick and Loutit 1976). The concentration of Cu in worms increased
with Cu levels in the bacteria (Table 18). Worms fed on bacteria containing
the lowest level (213 ppm) of Cu accumulated Cu to levels (236 ppm) only
slightly exceeding those of the bacterial cultures. At higher bacterial-Cu
concentrations, the Cu levels in the worms were about half those of the bac-
teria. The authors suggested that the worms treated at higher levels of bac-
terial Cu probably did not feed as much as those subjected to lower levels.
This study indicates that bacteria are an important source of Cu for tubificid
worms, but biomagnification of Cu did not occur during the 7-day feeding
period.

40. Several field studies also suggest that Cu does not biomagnify in
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freshwater food webs. Copper levels in the biota of the Illinois River

(Table 14) decreased with increasing trophic level (Mathis and Cummings 1973).
The average Cu level in detritivorous tubificid worms (23 ppm) was about the
same as that of the sediments (19 ppm). The mean Cu levels ranged from 1.2 to
1.7 ppm in clams, 0.17 to 0.26 ppm in omnivorous fishes, and 0.07 to 0.19 ppm
in predatory fishes. Cherry and Guthrie (1977) reported that the order of in-
creasing Cu levels in a coal ash basin was water < plants < vertebrates < in-
vertebrates < sediments (Table 13). Following dredging, Cu levels doubled in
plants and invertebrates and tripled in vertebrates. The Cu levels in verte-
brates were still about half thosé in invertebrates, however. No valid con-
clusion can be made regarding biomagnification, as the data were compromised
by the inclusion of organisms that did not constitute a logical food chain.
Anderson (1977) reported Cu levels in 35 genera of aquatic invertebrates from
the Fox River in Illinois. The highest Cu concentrations reported were 95 and
99 ppm, respectively, for the crayfish, Cambarus sp., and the isopod, Asellus
sp., both of which are largely detritivorous (Table 3). There was no obvious
pattern of Cu concentrations, except that crustaceans, as a group, contained
higher Cu levels than other groups, presumably because of a higher metabolic
Cu requirement. Lewis (1980) also found no relationship between trophic level
and Cu concentrations in the biota of four desert streams (Table 21). 1In
streams with contaminated sediments, Cu levels were elevated at all trophic
levels in comparison to levels in biota from less contaminated streams.
Highest Cu levels were found in plants and insects, with lower levels in the

vertebrates, except at Seven Springs Wash.

41. Copper in marine organisms. In the laboratory, Boothe and Knauer
(1972) found that the concentration of Cu in feces of crabs fed on algae con-
taining Cu was about four times that in the algae consumed. The apparent re-
tention of Cu was about 40 percent of the total ingested, suggesting that diet
is the primary source of Cu in marine crabs (Table 1). Another study (Rice,
Tenore, and Windom 1981) demonstrated a decrease in Cu in the polychaete worm,
Capitella capitata, as detrital ration was increased. Initial Cu concentra-
tions in Capitella, Ascophyllum nodosum detritus, and Gracilaria foliifera
detritus were 140, 9.6, and 9.7 ppm, respectively. Worms fed Ascophyllum

2

detritus rations of 0.04 and 0.09 g N m day“1 had average Cu concentrations

of 2,100 and 1,400 ppm, respectively. Those fed Gracilaria detritus rations of

0.11 and 0.13 g N m_2 day-1 contained 2,200 and 1,500 ppm Cu, respectively.
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There was wide variation in Cu content of the worms, however, and the apparent
decreases in Cu with increased level of ration were not statistically signifi-
cant. These data suggested that food would be a major source of Cu for marine
organisms.

42. Field research largely has indicated that biomagnification of Cu
does not occur in the marine environment. Surveys conducted by Preston et al.
(1972) revealed no tendency toward Cu enrichment in herbivores. The range of
Cu concentrations in the limpet, Patella sp., was similar to those in the
brown alga, Fucus spp., and the red alga, Porphyra sp., collected at the same
area (Table 4). As the authors indicated that the limpets were collected on
rocks, it is more likely that the limpets were feeding on organisms on the sur-
faces of the rocks, rather than on the algae. Stickney et al. (1975) surveyed
fishes and crustaceans in a Georgia estuary and found no relation between
trophic levels and Cu concentrations in tissues. The highest Cu levels that
were found in fish feeding on decapods averaged only 2 to 14 percent of those
of the various decapods (Table 22). The highest average Cu concentrations in
fish (2.3 ppm) were in those species feeding upon mysids and/or copepods.
These data are the concentrations of Cu on a whole-organism basis in the crus-
taceans and in muscle tissue of the fish and, consequently, may not be truly
representative of Cu levels in the fish. Phillips et al. (1982) reported that
the ranges of Cu concentrations in fish, bivalve molluscs, cephalopod molluscs,
and crustaceans from Victoria Harbor in Hong Kong were <0.1 to 1.1, 2.1 to 5.3,
4.4, and 1.1 to 35.2, respectively (Table 19). Copper levels in marine organ-
isms from Card Sound, Florida, were reported by Gilio and Segar (1976).

Table 6 shows that the highest mean Cu concentrations were 21, 12, 7.4, and
5.8 ppm, respectively, in epiphytes on Thalassia, Laurencia and pytoplankton,
detritivores and carnivores combined, and dead mangrove (Rhizophora mangle)
leaves. Sponges, which filter plankton and detritus particles from the water,
contained 3.7 ppm Cu. These data indicate that food is an important source of
Cu for marine animals, but biomagnification of Cu is unlikely.

43. Several studies of the movement of Cu within food webs of the Loire
Estuary, France, have been reported. Amiard et al. (1980) found elevated
levels of Cu in the gut contents of fishes in comparison with levéls in the
tissues (Table 8). These fishes had fed largely upon mysid crustaceans and
polychaete worms. Prey species contained substantially greater Cu levels than

did the predators (gut contents excluded). Crustaceans feeding on oligochaete
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and polychaete worms had the highest Cu levels for whole organisms (including
gut contents). A second study by the same group (Amiard-Triquet et al. 1980)
indicated that, during the digestive process, the concentration of Cu de-
creased slightly in stomach contents and increased in the intestinal contents.
The predators were planktivorous fish feeding largely upon copepods and mysids.
The Cu levels in the prey were significnatly greater than those in the preda-
tors, suggesting that Cu does not biomagnify. Metayer et al. (1980) also re-
ported that Cu concentrations decreased with increasing trophic levels

(Table 23). In this study, the highest average Cu levels were 4.1 and 4.8 ppm
in fish feeding on zooplankton. All three of these studies suggest that food
is an important source of Cu in estuarine fishes, but there was no evidence

for biomagnification of Cu. Talbot and Chegwidden (1982) examined Cu levels

in molluscs, polychaetes, and crabs from Cockburn Sound in Australia. Table 7

varied rather widely with location. The variability of Cu levels within each
species precluded any interpretation of possible trophic movement of Cu. Cop-
per concentrations in the flesh of crabs fell within the same range as those
in seagrasses (Posidonia spp.) and sea lettuce (Ulva lactuca) from other sites
in Cockburn Sound.

44. Using Cs:K ratios to establish trophic levels, Young and Mearns
(1979) and Schafer et al. (1982) studied marine webs off the coast of southern
California. Without exception, the Cu concentrations decreased at the higher
trophic levels (Tables 10 and 11). The highest Cu levels generally occurred
in crustaceans, with the exception of the 15.8 ppm in squid in a coastal pe-
lagic food web (Table 10). Polprasert (1982) also reported Cu levels in
marine fishes ranked by trophic level, but did not indicate how trophic level
was determined and only reported data for levels III and IV. The maximum
value reported for trophic level III (21.59 ppm) exceeded that for level IV
(3.54), but the ranges overlapped greatly. Generally, Cu concentrations re-
orted by Polprasert for level IIT e
which suggests that Cu does not biomagnify.

45. Although most of the field evidence indicates that Cu does not bio-
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may occur over short links of the food chain, particularly in molluscs and in
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seabirds. Kay and Rojanivipart (1976) reported Cu concentrations in peri-



vegetation and sediments taken from the same locations in a saltmarsh of the
Burry Inlet. The levels of Cu reported in vascular macrophytes, detritus,
macroalgae, sediments, and periwinkles were 5 to 13, 5 to 25, 8, 13 to 52, and
130 to 147 ppm, respectively, in areas from which periwinkles were collected.
Although these data suggest that biomagnification of Cu may occur in the her-
bivorous periwinkle, they are inconclusive, since no data were provided for Cu
levels in epiphytes, the primary food of periwinkles, and the data do not
account for possible direct absorption through the ‘foot. A similar pattern
for Cu was reported by Jenkins (1976). Enrichment factors (compared with sea-
water) for molluscs, other invertebrates, algae, fish, and zooplankton were
350, 20, 10, 7.5, and 4.9, respectively. These data suggest that biomagnifi-
cation of Cu may occur at the lower levels of the food web, particularly in
molluscs and invertebrates, but not at the uppermost levels. Data reported by
Greig et al. (1977) also suggest that Cu is not biomagnified through the upper
trophic levels (Table 16). The Cu concentrations in flesh of whelks, crabs,
and flounders at Long Island Sound (Area 2) averaged 21, 13, and 1.4 ppm (wet
weight), respectively. These levels may possibly reflect the respective meta-
bolic requirements for Cu in those species. High concentrations of Cu were
found in deposit-feeding clams, periwinkles, and dogwhelks (Bryan and Hummer-
stone 1977). Table 9 shows mean Cu concentrations >100 ppm in all of these
organisms. Limpets (Patella vulgata) and dogwhelks (Nucella lapillus), which
feed on limpets, averaged 19 and 110 ppm Cu, respectively. The deposit-
feeding clam, Macoma balthica, averaged 300 ppm Cu (range 96 to 615 ppm). The
data do not generally support biomagnification of Cu, except possibly from
limpets to dogwhelks.
Lead

by
46. Lead in freshwater organisms. Several laboratory studies have in-

vestigated the trophic movement of lead (Pb) in freshwater organisms. Patrick
and Loutit (1976) examined the passage of Pb from wastewater effluents through
bacteria to tubificid worms and concluded that bacteria may be an important
intermediary between the physical environment (effluent) and the aquatic food
webs. Tubificid worms (Tubifex sp. and Limnodrilus sp.) fed exclusively on
bacteria (Sphaerotilus sp.) containing 119, 410, and 721 ppm Pb, respectively,
accumulated 179, 559, and 568 ppm Pb (Table 18). The differences between the
initial Pb concentration (151 ppm) in the worms and the concentrations after

7 days of feeding, followed by 1 day without food (to allow for evacuation of
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gut) suggested that increased body burdens of Pb came from food. Accumulation
of Pb from water or via Pb leached from the bacteria were not considered. 1In
a similar study, Cowgill (1976) fed microcrustacea on Euglena gracilis and
mixed algal cultures, harvesting weekly for 3 months. The concentrations of
Pb in spring water, algae, and microcrustaceans were 0.85 ppb, 10.0 to

12.6 ppm, and 7.2 to 9.8 ppm, respectively (Table 20). The authors concluded
that the composition of the microcrustacean was "governed by the mixed algal
culture and the spring water." Biomagnification of Pb obviously did not occur
in this system, and the relative importance of bioconcentration and trophic
transfer of Pb could not be determined. Tarifeno-Silva et al. (1982) added
fish to a similar algae-Daphnia system to provide a three-level trophic chain.
The order of decreasing Pb concentration was algae > Daphnia sp. > fish
muscle >> water (Table 1). Daphnia magna accumulated significantly higher
levels of Pb than D. pulex. The magnitude of direct uptake of Pb from the
water by either Daphnia or fish was not determined. Biomagnification of Pb
apparently did not occur in any of these laboratory studies, at least at high
levels of exposure.

47. Analyses of field-collected organisms also indicate that biomagni-
fication of Pb is unlikely in freshwater food webs. The values of mean Pb
concentrations in the Illinois River (Mathis and Cummings 1973) were 28, 17,
2.2 to 3.7, 0.56 to 0.84, and 0.34 to 0.98 ppm, respectively, for sediments,
tubificid worms, clams, omnivorous fishes, and predatory fishes, and only
2 ppb in the water (Table 14). Anderson (1977) showed no trophic-level rela-
tionship for Pb in 35 genera of invertebrates from the Fox River. The Pb con-
centrations were higher in benthic invertebrates, and lower in the free-
swimming aquatic insects (Table 3). Predators (such as the leech, Placob-
della, and many aquatic hemiptera) often had substantially lower Pb levels
than the detritivores and filter-feeders. Enk and Mathis (1977) also found no
significant differences between Pb concentrations in predatory and non-
predatory species (Table 2). The general order of increasing Pb concentra-
tions was water < fishes < aquatic insects sediments < snails. The highest
levels observed were 13.6 and 12.6 ppm (wet weight), respectively, in a snail
(detritivore) and a damselfly (predator). Data collected as part of the
National Pesticide Monitoring Program showed no trend toward biomagnification
of Pb in freshwater fishes (May and McKinney 1981).

48. Lead in marine organisms. Most of the data on Pb in marine food
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webs come from analyses of field-collected materials and su
not biomagnified. A laboratory study by Boothe and Knauer (1972) implied that
f

food may constitute an important source of Pb accumulation, however. Crabs
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produced (Table 15). The Pb in feces accounted for about 75 percent of the
total ingested Pb. This suggests that part or all of the remaining 25 percent
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data on Pb levels within the crabs' tissues.

49. Jenkins (1976) made an extensive survey of the literature and cal-
culated "maximum enrichment factors” for Pb in marine organisms, based upon
the levels reported in the literature as compared with a mean Pb level of
0.04 ppb in seawater. The enrichment factors (x 103) for Pb were 500, 147,
375, 1,000, and 75, respectively, for algae, zooplankton, invertebrates except
molluscs, molluscs, and fish.

50. Several field studies reported Pb in various marine biota. Anal-
yses of algae and limpets collected in coastal waters of the British Isles
indicated elevated Pb levels in a first-level consumer (Preston et al. 1972).
In two areas, Pb concentrations in the limpet, Patella sp., were about double

those in marine macroalgae, Fucus sp. and Porphyra sp. (Table 4). Whether the

limpets actually fed on the algae or, more 1li
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epiphytic organisms was not indicated. Consequently, biomagnification cannot
be positively demonstrated. A study of trace elements in Card Sound, Florida,

r 1976) The
L 27iv ).

40

mean Pb concentrations in the macrofauna were less than or equal to those in

phytoplankton, epiphytes on seagrasses, and macrophytic vegetation (Table 6).
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whelks at a single location (Long Island Sound--Area 2), but Pb decreased by
an order of magnitude from crab to flounder (Table 16). At the Chincoteague
Inlet site, Pb concentrations were lowest in clams and crabs (<0.5 ppm) and
approximately the same in whelks and flounder (0.9 and 0.8 ppm, respectively).
The data suggested that biomagnification of Pb probably did not occur. Talbot
and Chegwidden (1982) found that Pb in flesh of the crab, Portunus pelagicus,
was less than or equal to those of molluscs collected within the same areas
(Table 7). Lead in the hepatopancreas of the crabs was two to four times that
in the flesh, however. Analyses of finfish and shellfish from Victoria Harbor,
showed no trend toward biomagnification of Pb (Phillips et al.

5 1
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1982). Table 19 shows that the highest levels observed were in bivalve mol-
luscs (0.1-3.0 ppm), whereas the other invertebrates and finfish had lower Pb
levels (<0.1-0.3 ppm).

51. Several studies have included feeding habits along with tissue anal-
yses. Stickney et al. (1975) found no substantial differences in the Pb con-
tent of either fish or invertebrates and no correlation between food habits
and Pb content of fishes in a Georgia estuary (Table 22). Lead levels in the
Looe Estuary (England) showed no tendency to biomagnify within the inverte-
brate community (Bryan and Hummerstone 1977). The highest levels were ob-
served in a deposit-feeding clam, Scrobicularia plana; lowest levels were in
the predatory dogwhelk, Nucella lapillus (Table 9). The Pb concentration in
dogwhelks was about 20 percent of that in limpets, a common food of the
dogwhelk.

52. Analyses of the fauna of the Loire Estuary (France) provided no
evidence for the biomagnification of Pb in estuarine food webs. Amiard et al.
(1980) showed that Pb concentrations in predators were usually much lower than
those either in live prey or in the gut contents (Table 8). Trophic transfer

concentration in predator

factors - p
concentration in prey

were <1 for Pb in plantivorous fishes

(Amiard-Triquet et al. 1980). Metayer et al. (1980) observed that the range
of Pb was similar in both ominivorous and carnivorous fishes (Table 23).
Analyses of fish stomach contents showed significantly higher levels of Pb
than observed in the fishes.

53. The use of Cs:K ratios to assign trophic level also has shown that
Pb does not biomagnify within marine food webs. Young and Mearns (1979) re-
ported similar levels of Pb in fish representing different trophic levels of
the Salton Sea and Newport Bay food webs (Table 10). In the Palos Verdes food
web, these authors also reported similar Pb levels at all trophic levels, with
the exception of scorpionfish. The scorpionfish represented the top trophic
level in the food web and contained Pb concentrations an order of magnitude
greater than those in most of the other species, including bocaccio, which
also was assigned to the same trophic level as the scorpionfish. Schafer
et al. (1982) also found no evidence of Pb biomagnification (Table 11). The
highest levels of Pb were in the zooplankton, and the lowest were in the white
shark (top predator) and squid (intermediate trophic level) in a coastal pe-

lagic food web. Mysids and decapods had the highest Pb contents in an
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epibenthic food web. Polprasert (1982) also ranked fishes in the Chao Phraya
River Estuary according to trophic level. Based upon the average Pb concen-
trations in many samples, he concluded that biomagnification of Pb might pos-
sibly occur. The average Pb concentration in 69 samples from level III and

71 samples from level IV were 11.56 and 13.19 ppm, respectively. The ranges
of the mean Pb concentrations for different species at levels III and IV were
0.49 to 283.91 and 0.08 to 35.5 ppm, respectively. The author did not include
representatives of other trophic levels or specify how trophic levels were
determined. Consequently, it was difficult to conclude biomagnification of Pb.

Mercury

54. Mercury in freshwater organisms. The uptake and movement of mer-

cury (Hg) within freshwater food chains have been studied intensively in the
laboratory. Lock (1975) compared the uptake of methylmercury from food and
water by Daphnia pulex and rainbow trout (Salmo gairdneri). TFor the food-~
chain studies, the Daphnia were fed algal cells (Chlamydomonus reinhardtii)
that had been previously exposed to various levels of methylmercury; trout
were fed pelleted food containing methylmercury. Table 24 shows the uptake of
methylmercury from food and water. Methylmercury apparently did not bio-
magnify in this laboratory study. The data were difficult to compare, how-
ever, as Hg in fish was reported on a fresh-weight basis, whereas that in the
diet was reported as parts per million dry weight. The author concluded that
the uptake of methylmercury was more rapid from water than from food, but the
"percentage uptake of mercury was 5-10 times higher from the latter source."
The author stated further that most of the methylmercury burden of aquatic
organisms would come from food, since most methylmercury is complexed with
organic matter and dissolved methylmercury is present in water at concentra-
tions lower than 1 pptr (parts per trillion).

55. A series of studies using three- and four-step trophic chains
(algae-Daphnia-mosquitofish-trout) indicated the importance of food as a
source of Hg. Using '"global contamination" (i.e., simultaneous contamination
via both water and food) with methylmercury, Boudou et al. (1979) found that
direct methylmercury uptake at 18° C was about half that of global uptake.
Global accumulation and direct accumulation were similar at 10° C, however.
Temperature had a pronounced effect only on global uptake, presumably as the
result of increased feeding at the higher temperatures. The concentration of

Hg in the water was 1 ppb, but no information was given about the organismal
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Hg concentrations in the algae or Daphnia. Ribeyre, Boudou, and Delarche
(1979) added trout, Salmo gairdneri, to the trophic chain and similarly found
substantially greater methylmercury uptake via global contamination than from
water alone. Global Hg uptake was less at 26° C than at 18° C, probably the
result of greater feeding by trout at the cooler temperatures. This tempera-
ture effect was again demonstrated by Ribeyre, Delarche, and Boudou (1980).
The major difficulty in interpreting the results of these three studies is
that, using global contamination,; all components of the system were present
simultaneously. No studies were done to demonstrate trophic contamination and
trophic movement of methylmercury in the flow-through systems using uncontami-
nated water.

56. A similar problem arises in the study by Cowgill (1976), in which
algae were cultured in spring water and then fed separately to Daphnia sp.,
in the Daphnia was 30 to 40 percent less than that in the algae (Table 20).
The water contained 0.13 ppb Hg, in contrast to 4.2 to 4.25 ppm in the algae
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57. Phillips and Buhler (1978) addressed the problem of methylmercury
accumuiation from food and water. TUptake of methylmercury by trout over a
24-day period was essentially linear, regardless of whether the route of expo-
sure was water, food, or both. Uptake from food and water was additive, and
accumulation from one source had no influence on that from the other
(Table 25). The authors indicated that about 70 percent of the methylmercury
ingested and 10 percent of that passed over the gills was assimilated by the
trout. This study suggests that methylmercury uptake from food might result
in biomagnification. The evidence was not conclusive

58. Bacteria are important in the movement of Hg into aquatic food webs

because of their involvement in the conversion of inorganic Hg into organic

ot

o follow the

acteria. Bacteria (Bacillus licheniformis) were exposed
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when incubated 96 hr at 23°, 37°, and 45° C. When the bacteria were
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cent as much Hg from bacteria labelled with organic Hg as from those
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Hg were fed to guppies (Lebistes reticulatus), however, guppies accumulated
2 Hg from both sources. The same was observed for cichlid

similar levels of
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tors shown for both organic and inorganic Hg in the cichlids was substan-
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tially >1 only in the gut and in feces, and <1 in guppies. These data showed
that food was an important source of Hg, particularly in the primary consumer.
Analyses for 203Hg were done by scintillation counting, with no mention of the
forms of Hg which the consumers actually ate. The trophic movement of 203Hg
was compromised by labelling the food organisms by direct contamination,
rather than by passage of 203Hg through a continuous trophic chain, however,
and no definitive conclusions could be made from this study regarding biomag-
nification. Longer term feeding studies may be necessary to clarify the role

sumers in such labora-

of food in Hg movement to the secondary and tertiary con
tory microcosms.

59. The movement of Hg through aquatic food webs has been studied in
h (1

more detail under field conditions Cherry and Guthri

(t4
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levels in the components of a coal ash basin, both before and after dredging.

Table 13 shows similar Hg levels in all the biotic components of this system.

g

of organisms that do not constitute a logical food chain compromise the value
of the study. The data do suggest a lack of biomagnification of Hg in this

60. Potter, Kidd, and Standiford (1975) demonstrated a relationship be-
tween trophic level and Hg content of organisms from Lake Powell, Arizona.
Figure 1 shows clearly that Hg was biomagnified by fish in this study. The
highest Hg levels were in the top predators (walleye and bass). The rela-
tively high levels in carp and catfish are likely the result of an omnivorous
feeding habit. Paasivirta et al. (1983) also examined Hg in fish. At three
lakes in Finland, the mean Hg levels were higher in pike than in roach. The
data were quite variable, however. Biomagnification of Hg may have occurred
at Paijanne, where Hg levels in roach and pike were 0.238 * 0.107 and 0.660
respectively. Most (85-95 percent) of the Hg in both species was
methylmercury. Possible evidence of Hg biomagnification also was shown by

Hildebrand, Strand, and Huckabee (1980). Fishes (rock bass and hogsucker) in
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invertebrates (Table 26). The authors reported that the majority of the Hg
in fishes at all sampling stations was methylmercury.

61. Several other studies have examined Hg levels in freshwater fishes
from different locations. Fimreite and Reynolds (1973) reported higher levels
of Hg in the top predators than in fish at lower trophic levels in mercury-
contaminated areas. Suckers (omnivore/detrivore) had lower Hg than pike, wall-
eye, and burbot (Table 27). The Hg level in muscle had a high positive cor-
relation with body weight. An earlier paper (Fimreite et al. 1971), however,
showed no clear trend toward increasing Hg concentrations at higher trophic
levels and no apparent relationship between body weight and Hg levels in fish
(Table 28). Henderson and Shanks (1973) compared Hg concentrations in fishes
from the Columbia River system and from streams in other areas of the United
States, including Alaska and Hawaii. In this study, there was no apparent
correlation between Hg level and body weight. The highest Hg levels were
found in the northern squawfish, a predatory species collected in the Columbia
River system, but not elsewhere. Akielaszek and Haines (1981) attributed the
levels of Hg in the top predators in Eagle and St. Froids Lakes to the pres-
ence of rainbow smelt, an abundant forage species in these lakes. 1In
Cliff Lake, which is similar to the other two lakes both physicochemically and
biologically but lacks rainbow smelt, Hg levels in the predators were lower
than in Eagle and St. Froid Lakes (Table 29). There was no correlation be-
tween fish size and Hg content. May and McKinney (1981) also reported substan-
tially higher Hg levels in predators than in other fishes from locations
throughout the United States and Canada. Their data also showed no relation-
ship between weight and Hg accumulation. From the data presented in these
papers, it appears that Hg may be biomagnified in the top predatory fish spe-
cies, especially in regions of known Hg contamination.

62. Mercury in marine organisms. Bacteria have an important role in

the mobilization and entry of Hg into the marine food web. The presence of

Hg~reducing or Hg-accumulating bacterial strains of Pseudomonas sp. greatly

enhanced the absorption of 203Hg from seawater by the oyster, Crassostrea
virginica (Sayler, Nelson, and Colwell 1975). In the presence of these bac-
teria, the majority of 203Hg in the water was associated with the particulate

(bacterial) fraction. After 4 days incubation, the concentrations of Hg were
significantly greater than the controls in whole oyster, gills, and adductor

muscle when Hg-accumulating bacteria were present and in the gills when
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Hg-reducing bacteria were present (Table 30). Similar studies by Colwell

et al. (1975) indicated 203Hg accumulation by bactivorous ciliates. After

4 hr of incubation, about 20 percent of the 203Hg activity localized in bac-
teria had transferred to the ciliates. Further work by Berk and Colwell
(1981) demonstrated the transfer of 203Hg from labelled bacteria (Vibrio sp.
and Pseudomonas sp.) through ciliates (Uronema nigricans) to a copepod (Eury-
temora affinis). The concentrations of Hg in ciliates fed on bacteria con-
taining 6.6, 14, and 50-60 ppm Hg were 86, 200, and 160-340 ppm, respectively.
The authors indicated that 44-53 percent of 203Hg present in ciliates was re-
tained by copepods fed on the ciliates. The Hg concentration in ciliates fed
to the copepods was not shown, but the authors stated that Hg was not biomag-
nified from ciliate to copepods in 72-hr feeding experiments.

63. Trophic transfer of Hg from jack mackerel to yellowtail was re-
ported in a laboratory study (Suzuki and Hatanaka 1974). Yellowtail were fed
on jack mackerel previously raised in methylmercury-dosed seawater. The mean
Hg level in yellowtail increased from 0.05 to 0.43 ppm during an 18-day feed-
ing period. The level of Hg in jack mackerel used as the diet for yellowtail
was not specified, but the authors indicated that the transfer of Hg from diet
to yellowtail averaged 88 percent. This suggests that food is an important
source of Hg in the marine food chain.

64. Several studies with field-collected marine organisms have sug-
gested that Hg is not always biomagnified. Polprasert (1982) ranked fish in
Chao Phraya River Estuary into either trophic level III or IV and found no
difference in the range of Hg concentrations. The ranges of Hg concentrations
at levels III1 and IV were 0.01 to 0.70 and 0.01 to 0.57, respectively. Aver-
age Hg concentrations for these two levels were 0.10 (n=69) and 0.16 (n=71)
ppm, respectively. Polprasert's contention that this represented 'possible
bio-magnification" is difficult to reconcile from his data without further in-
formation on feeding habits and without data on Hg at lower trophic levels.
How trophic levels were determined was not indicated. Leatherland et al.
(1973) also have shown poor correlation between Hg concentration and trophic
level. The shark (Etmopterus spinax), which was designated the top predator
in the system, had lower Hg levels than other species except the jellyfish,
Pelagia sp., and a tunicate, Pyrosoma sp. (Table 5). Greig, Wenzloff, and
Shelpuk (1975) also found no obvious correlation between feeding habit and Hg
content of fish in the North Atlantic (Table 31). The mean Hg concentrations

45



in fish muscle and fish livers of 41 species of fish were 0.154 (* 0.124) and
0.164 ppm, respectively. Invertebrates usually had <0.1 ppm Hg. Levels in
plankton, pandallis shrimps, scallops, squid, and sediments usually were

<0.05 ppm. One lobster sample had 0.31 and 0.60 ppm Hg in tail muscle and
liver, respectively. Another study by Greig et al. (1977) showed that Hg did
not biomagnify in benthic biota (Table 16). The Hg concentrations in flounder
were approximately the same as those in crabs. Stoeppler et al. (1979) also
reported similar results for benthic organisms. Phillips et al. (1982) re-
ported levels of Hg in finfish, bivalve molluscs, cephalopods, crabs, and

shrimps taken from Victoria Harbor, Hong Kong, to be <0.1 to 0.3, 0.1 to 0.5,
<0.1, <0.1 to 0.3, and <0.1

gnectivelyv (Table 10)
0.3, an 0.1, respectively (Table 19).

65. Most of the field-collected data suggest that Hg is biomagnified in

marine food webs, however. Field data relating feeding habits or trophic
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in marine organisms. Jenkins (1976) reported maximum relative Hg concentra-

tion factors of 0.8, 8.4, 10.0, and 31.0, respectively, for marine algae, in-
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(1975) found Hg levels >0.5 ppm in 51 percent of the fish which feed predom-

inately on other fish, in contrast to only 24 and 7 percent, respectively, in
invertebrate-feeding and herbivorous fish (Table 32). Stickney et al. (1975)
showed higher Hg levels in fish feeding upon mysids and decapods than in the
prey organisms (Table 22). Marine organisms ranked into trophic levels on the
basis of Cs:K ratios also showed increased Hg concentrations at the upper
trophic levels (Young and Mearns 1979). Both organic and total Hg were mag-
nified in the top predators in the Salton Sea and at Newport Bay (Table 10).
Similar results were reported by Schafer et al. (1982) in open ocean, coastal
pelagic, and epibenthic food webs off California (Table 11).

66. Along the coast of the southeastern United States large predators,

especially sharks, contained significantly higher levels of methylmercury and
(Tah1n QQ) than

than the smaller fora such as the menhaden and
killifishes and the crustaceans (Gardner et al. 1975). Klemmer, Unninayer,

and Okubo (1976) reported average Hg concentrations of 0.26, 0.10, 0.08, and
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0.075 ppm in species feeding in direct contact with the sediment, and 0.036,
0.070, and 0.080 ppm in species feeding above the sediment-water interface.
Matsunaga (1978) reported that Hg accumulation probably "depends on food chain
amplification.”" Table 34 shows high Hg levels in many of the large predatory
species, particularly tuna, skipjack, and seabass, and in the rockfishes
(Sebastes spp.), and low Hg levels in small forage species and invertebrates.
Similar results were reported for fish and shellfish caught off the Indian
coast (Ramamurthy 1979). Figure 2 shows that the top predators (tuna and
shark) had substantially higher mean Hg levels than did detrivores (shrimps),
filter-feeders (oysters and clams), plankton-feeders (mackerel), and small
forage species (sardines and ribbonfish). Similar results were reported by
Stoeppler et al. (1979) for marine pelagic speices from the Atlantic Ocean and
the Mediterranean Sea. The top predators, swordfish (Xiphias gladius) and
horse mackerel (Trachurus trachurus), contained 1,260 and 1,225 ppb Hg, respec-
tively (Table 35). Significantly lower levels were found in small forage spe-
cies, such as anchovy (Engraulis encrasicholus). Hilmy, Shabana, and Saied
(1981) reported that the mean Hg concentrations in fish (Aphanius dispar),
shrimp (Sergestes lucens), and mussels (Modiolus modiolus) taken from the Red
Sea were 0.50, 0.25, and 0.33 ppb, respectively.

Zinc

67. Zinc in freshwater organisms. Several laboratory studies have in-

dicated that zinc (Zn) does not biomagnify in aquatic systems. Cowgill (1976)
fed microcrustaceans (Daphnia spp.) on algae cultured in spring water. The Zn
levels in the algae and in the crustaceans following the feeding period were
304 to 339 ppm and 102 to 135 ppm, respectively (Table 20). 1In another inves-
tigation, the Zn concentrations in tubificid worms fed upon bacteria grown in
wastewater effluent increased in direct proportion to Zn levels in the bac-
teria (Patrick and Loutit 1976). The Zn concentrations in the worms were sub-
stantially lower than those in the bacteria, except at the lowest level of
bacterial Zn (Table 18). This study showed that bacteria were an important
source of Zn for tubificids, but biomagnification did not occur. A similar
study (Tarifeno-Silva et al. 1982) used a three-step tropic chain including
algae, microcrustaceans, and fish. Table 1 shows that the Zn concentrations
decreased from algae to Daphnia spp. to fish.

68. Another study suggested both that food was an important source of

Zn and that Zn might be biomagnified, at least within the lower levels of
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aquatic food chains (Elwood, Hildebrand, and Beauchamp 1976). Aquatic fly
larvae (Tipula sp.) fed on leaf detritus contained Zn concentrations about
threefold those of the leaf detritus (Table 12), even after gut evacuation.
69. Evidence from field studies suggests that Zn concentrations in rep-
resentatives of the upper trophic levels rarely exceed and frequently are much
lower than those of their food organisms. Mathis and Cummings (1973) found
the highest Zn levels in clams and detritivorous annelids (tubificid worms)
and substantially lower levels in fishes (Table 14). Similar Zn concentra-
tions were present in both predatory and omnivorous fishes. Anderson (1977)
reported a wide range of Zn concentrations for 35 genera of invertebrates from
the Fox River, Illinois. The highest levels were generally found in detritus-
and sediment-dwelling organisms (e.g., clams, decapods, caddisflies, and may-
flies), which are mostly detritivorous or filter-feeding species (Table 3).
Lower Zn levels were found in the pelagic predators (bugs and beetles) and in
the benthic predators (dragonflies and leeches). A notable exception was the
predatory giant waterbug, Belostoma sp., which contained 228 ppm Zn. Lewis
(1980) showed generally higher Zn levels in aquatic insects than in aquatic
vertebrates, but the relative positions of the groups of organisms with re-
spect to Zn concentrations varied somewhat with location (Table 21). Cherry
and Guthrie (1977) indicated somewhat higher Zn concentrations in animals than
in plants within a coal ash basin, both before and following dredging opera-
tions (Table 13). Before dredging, average Zn concentrations in invertebrates
were slightly greater than those in vertebrates. Following dredging, this
trend reversed. It is difficult to interpret the data as biomagnification,
however, as the organisms analyzed did not constitute a logical food chain.

70. Zinc in marine organisms. Radioactive 652n has been used to follow

the uptake of Zn from food and water in laboratory studies. Renfro et al.
(1975) used a global contamination design to examine the relative importance
of food and water as pathways for entrance of Zn into marine food chains. The
specific activity of 65Zn increased in shrimp (Lysmata seticaudata) immedi-
ately following feeding on brine shrimp (Artemia salina) and then decreased
within 24 hr to levels similar to those of shrimp fed upon uncontaminated
brineshrimp and which received 65Zn solely from the water. The source (food
or water) of the 65Zn for Artemia had no influence upon 652n uptake by the
shrimps. Crabs (Carcinus maenus) absorbed more 65Zn globally (simultaneous

exposure via both food and water) than from water alone, but lost the
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additional 65Zn during molting. Fish (Gobius sp.) accumulated significantly
more 652n from food (Artemia and mussels, Mytilus galloprovincialis) and water
than from water alone. The data did not indicate biomagnification of 65Zn over
a 90-day feeding period, but food did appear to be an important source of 65Zn
activity. Similarly, Young (1977) reported that food was the major source of
52n for dogwhelks exposed to labelled seawater or labelled food (barnacles,
Balanus balanoides). The author stated that 652n was not "accumulated up the
food chain,”" however. Booth and Knauer (1972) also showed evidence that food
is a major source of Zn. Table 15 shows that crabs fed on algae retained
about 67 percent of the Zn ingested. The Zn concentration in crabs following
feeding on the algae was not specified.

71. The majority of the field studies available reflected the results
of laboratory investigations showing food as the major source of Zn for marine
organisms, but did not show biomagnification of Zn within the food web.
Jenkins (1976) surveyed the literature for heavy metals in marine organisms
and calculated relative maximum enrichment factors of 13.8, 6, 57, 500, and
160, respectively, for algae, zooplankton, invertebrates except molluscs,
molluscs, and fish. Preston et al. (1972) reported Zn levels in the limpet,
Patella, that were within the ranges of Zn in macroalgae from the same area
(Table 4). Leatherland et al. (1973) reported that the Zn concentration in a
predatory fish (Diaphus dumerili) was substantially lower than those observed
in pelagic crustaceans (Table 5). Gilio and Segar (1976) showed substantially
lower Zn concentrations in the macrofauna of Card Sound, Florida, than in the
phytoplankton, epiphytic algae, and macrophytes (Table 6). At various sites
along the northeastern coast of the United States, Zn levels (Table 16) were
elevated in crabs, in comparison with molluscs (Greig et al. 1977). The Zn
levels in flounder were significantly less than those in the crabs, however.
Talbot and Chegwidden (1982) indicated that the Zn concentration in the flesh
of crabs was about the same as that in polychaetes and mussels (Table 7).
Substantially higher Zn levels were present in the hepatopancreas than in the
flesh of the crabs. The range of Zn concentrations reported by Phillips
et al. (1982) for finfish was considerably less than those for molluscs and
crustaceans (Table 19).

72. Several reports that correlated trophic level or food habits with
Zn levels also indicated that biomagnification of Zn does not occur in the

marine environment. Stickney et al. (1975) found that Georgia estuarine
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fishes contained Zn concentrations less than or equal to those in their pri-
mary foods (Table 22). Bryan and Hummerstone (1977) found no substantial dif-
ferences in the concentrations of Zn in a variety of benthic invertebrates
from the Looe Estuary. The highest average Zn levels were found in deposit-
feeding clams, and lowest were in the cockle. The range of Zn concentration
in the predatory dogwhelk widely overlapped that of one of its common food
organisms, the limpet. Similar results have been obtained by using Cs:K
ratios to rank organisms according to trophic level. Young and Mearns (1979)
found no evidence of Zn biomagnification in any of three California saltwater
food webs (Table 10). Shafer et al. (1982) also reported that Zn did not bio-
magnify either in a pelagic or an epibenthic marine food web off the coast of
California (Table 11).

73. There was a suggestion of possible Zn biomagnification, however.
Amiard-Triquet et al. (1980) reported that Zn was accumulated more from food
than from water by planktivorous fish and that concentration factors were
often >1 for Zn. Their data, however, also showed that Zn levels in herring,
sprat, and copepods field collected from the Loire Estuary were about 97, 67
to 100, and 225 to 228 ppm, respectively, suggesting no biomagnification.
Consequently, the interpretation of their data as in any way supporting the
biomagnification of Zn must be done with reservation. Another study by the
same authors (Amiard et al. 1980) showed higher Zn levels in several species
of fish than in their major food organisms (Table 8). The Zn levels in a fish
designated by the authors as the "supercarnivore,'" as well as in several other
fishes, were approximately equal to those in their food. Metayer et al.
(1980) found that Zn in predatory and omnivorous fishes of the Loire Estuary
often exceeded that of their prey by as much as a factor of 2. Table 23 shows
that fish feeding on zooplankton and an annelid (Boccardia ligerica) had sub-
stantially lower Zn levels than their food.

Summary

74. The information reviewed indicates that heavy metals do not biomag-
nify greatly either in freshwater or marine food webs, with the possible ex-
ception of methylmercury. Field and laboratory studies show that food may be
an important source for the bioaccumulation of toxic heavy metals, particu-
larly those which are essential trace elements (Cu, Zn, and Se), but also
some which have no known metabolic functions (Cr, As, Cd, Hg, and Pb). These

elements did not biomagnify to any extent within the food web, however.
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Concentrations of these elements were generally higher in the tissues of ben-
thic species (particularly herbivores and detritivores) and, occasionally,
planktivores than in the top-level carnivores. In the case of Hg, laboratory
evidence suggested that biomagnification would not occur, but was contradicted
by the majority of the field studies, which indicated biomagnification.
Methylmercury has an affinity for muscle and tissues and apparently is biomag-
nified through the trophic web to the top predators. Consequently, high con-
centrations of methylmercury are frequently found in the large, commercially
valuable fishes. Inorganic Hg does not appear to biomagnify in aquatic food
webs, however. There is no satisfactory explanation for the contradictory

results of laboratory and field studies, with respect to Hg biomagnification.

Organic Compounds

Polychlorinated biphenyls

75. Polychlorinated biphenyls (PCB) in freshwater organisms. Labora-

tory studies indicate significant uptake of PCB in contaminated foods by fresh-
water animals. Lieb, Bills, and Sinhuber (1974) found that rainbow trout
(Salmo gairdneri) fed a trout diet containing 15 ppm PCB (Aroclor 1254) re-
tained 68 percent of the total PCB ingested over a 32-week feeding period
(Table 36). Figure 3 shows that no depuration of accumulated PCB occurred
when trout were removed from the PCB diet. Sommer et al. (1982) examined the
uptake of PCB by yellow perch (Perca flavescens) fed control and experimental
diets containing 0.2 and 1.8 ppm PCB, respectively. Table 37 shows that perch
fed the control diet for 30 weeks contained about 25 percent as much PCB as
those fed the diet containing 1.8 ppm of PCB. Biomagnification of PCB did not
occur during the 30-week feeding period, but PCB accumulation was significant.
The authors also indicated that adult fish depurated PCB less rapidly than
fingerlings.

76. Bruggeman et al. (1981) also reported significant PCB uptake from
food by goldfish (Carassius auratus). Table 38 shows that there was much
greater accumulation of PCB from PCB-saturated water than from dietary ex-
posure. This would suggest that fish acquire the majority of their PCB body
burden by bioconcentration from the water, rather than from dietary uptake.
PCB-saturated water probably does not occur in nature, however. As the PCB

levels in the aqueous exposure study (>130 ppb) are very likely unrealistic,
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Figure 3. Total amount of PCB accu-
lated by fish from their diet: (A)
fish on diet containing 15 ppm of
PCB; (B) fish removed from diet con-
taining 15 ppm of PCB at end of 16
weeks (from Lieb, Bills, and Sinn-
huber 1974). Reprinted with per-
mission from the Journal of Agri-
cultural and Food Chemistry, Vol 22,
p 640, Copyright 1974--American
Chemical Society
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the high levels of PCB in the goldfish may not necessarily reflect what occurs
in nature. The National Research Council (1979) reported PCBs in the range
of a few parts per trillion (pptr). That the PCB levels in water in the study
by Bruggeman et al. (1981) were unrealistic has been shown clearly by Spiga-
relli, Thommes, and Prepejchal (1983), who reported that the PCB levels in
filtered water from Lake Michigan were 10.9 * 1.3 ng/2 (pptr). Adult brown
trout (Salmo trutta) were exposed to lake water containing 10.9 pptr PCB *
alewife (Alosa pseudoharengus) that were taken from Lake Michigan and which
contained 2.5 ppm PCB. Figure 4 shows the accumulation of PCB from water
alone and from food and water under different conditions of cyclic and con-
stant temperature. The authors reported that uptake from the water alone ac-
counted for about 10 percent of the total uptake from food and water. A cy-
clic temperature regime, more closely resembling a natural condition than
constant temperature, gave substantially higher PCB uptake than constant 13° C.
77. TField studies have not given a clear picture of the potential for
biomagnification of PCB in freshwater food webs. Veith (1975) presented evi-
dence that biomagnification of PCB occurred in Lake Michigan fishes. Table 39
shows substantially greater PCB concentrations in the top predators, salmon
and lake trout, than in fishes at lower trophic levels. In three Finnish

lakes, however, Paasivirta et al. (1983) found greater PCB concentrations in
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Figure 4. Projections of PCB concentrations (parts per
million) in brown trout stocked into Lake Michigan at

Age II (400 g) under four assumed conditions: (A) con-
tinuous exposure to cyclic temperature regime, PCBs in
food = 2.5 ppm; (B) continuous exposure to ambient tem-
peratures, PCBs in food = 2.5 ppm; (C) continuous expo-
sure to constant 13°C, PCBs in food = 2.5 ppm; (D) con-
tinuous exposure to ambient temperatures, PCBs in food
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the plankton than in fish (Table 40). The PCB levels in a top carnivore
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have produced some conflicting evidence regarding the route of PCB uptake.
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muscle, and carcass of grey mullet exposed for 48 hr to 0.5 ppm in water were
7, 66, and 16 times greater, respectively, than the accumulation over a 30-day
period from food containing 50 ppm. Although the author concluded that food
was not a major source of PCB for the mullet, uptake from food was indicated.
The use of dimethylsulfoxide (DMSO) as a carrier to maintain the PCB in solu-
tion as well as unrealistic levels of PCB may have been responsible for the
high levels of PCB accumulated by the mullett, as suggested recently by
Spigarelli, Thommes, and Prepejchal (1983). Another study (Scura and
Theilacker 1977) examined a three-step "food chain'" exposed globally for

45 days to 2.3 to 2.1 pptr Aroclor 1254 in seawater without using a carrier
solvent. At the end of the study, the concentrations of the PCB in algae
(Dunaliella sp.), rotifers (Brachionus plicatilis), and larval anchovies
(Engraulis mordax) were 0.25, 0.42, and 2.06 ppm
state 'what appeared to be bicamplification up the food chain when compared on
a dry-weight basis was in reality only a reflection of the higher percentage
of lipids in the rotifers." The authors' statement a
is untenable, however, as the average lipid contents of algae, rotifers, and
anchovy larvae were 6.4, 15.0, and 7.5 percent, respectively. Anchovy larvae
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Although these data show that PCB was being biomagnified, other data presented

suggest that most of the PCB in anchovy larvae came from equilibrium parti-

““““ between PCB in the water and PCB in lipids, rather than from food.
Over a 25-day period, anchovy larvae feeding on rotifers averaged 2.06 ppm PCB
in comparison with 2.80 and 4.70 ppm, respectively, in unfed 3- and 2-day-old
anchovy larvae. Courtney and Langston (1980) reported the uptake of Aro-
chlor 1254 by juvenile turbot (Scophthalmus maximus) exposed to the PCB via
different sources. Table 41 shows that uptake from food occurred but was
substantially less than the uptake from sediments. This suggests that uptake
of PCB from sediments may be more important than that from food, at least in
areas with high PCB contamination. If this also occurs in the field, the
open-water disposal of large amounts of dredged materials that are highly con-
taminated with PCBs potentially may cause an undesirable impact upon aquatic
organisms near the disposal areas. Such open-water disposal sites very likely

would be capped to prevent environmental perturbations.



PCB. Zitko (1974) found significant uptake of Aroclor 1254 by juvenile Atlan-
tic salmon fed on diets containing 10 and 100 ppm of the PCB. At the lower
exposure level, no further uptake occurred after about 30 days feeding, indi-
cating that equilibrium had been reached (Table 42). At 100 ppm PCB in the
diet, however, equilibrium had not been reached after 181 days. Recent work
by Rubinstein (N. I. Rubinstein, U.S. Environmental Protection Agency, Gulf
Breeze, Florida, unpublished data) has demonstrated food-chain transfer of PCB
from polychaete worms (Nereis virens) to spot (Leiostomus xanthurus). Spot
fed for 20 days on worms containing an average of 0.45 ppm PCB contained about
1.05 ppm PCB in contrast to about 0.1 ppm PCB in fish fed control ("clean'")
worms. These results suggest that diet contributed significantly (p > 0.001)
to the PCB body burden in spot.

80. Some evidence has been shown that PCB may not biomagnify in natural
marine food webs. Giam et al. (1972) found no tendency for PCB levels to in-
crease with trophic level. Large predatory fishes contained PCB concentra-
tions in muscle tissues that were less than or equal to those in smaller
fishes and invertebrates (Table 43). The organisms in this study were col-
lected on different dates and at different locations throughout the Caribbean
Sea and Gulf of Mexico. Consequently, the comparison may not be entirely
valid. Table 44 (Warfe and van den Broek 1978) shows substantially higher PCB
levels in mussels, crabs, and shrimps than in whiting from the Lower Medway
Estuary, Kent. Bastiirk et al. (1980) reported similarly that fish (mullet and
goatfish) had levels of PCB less than or equal to those in invertebrates
(Table 45). The data were inadequate to make any valid conclusions, however.
Schneider (1982) also showed no definite relationship of PCB level in marine
organisms to trophic level, either on the basis of parts per million wet
weight or parts per million in lipid (Table 46).

81. Using Cs:K ratios, Young and Mearns (1979) found poor correlations
between trophic level and total PCB concentrations in two of three marine food
webs. In the Palos Verdes food web, fishes had somewhat greater PCB burdens
than invertebrates, with the exception of bocaccio, which was at the top of
the trophic web, but had relatively low PCB levels. Similar work by Schafer
et al. (1982) showed widely varying PCB levels at all trophic levels in three
California marine food webs. The highest levels observed in each food web
were in predatory species, however (Table 47). Unusually high levels, 41.9

and 84.7 ppm PCB, were reported for spiny dogfish and sea lions, respectively.

56



verall, predators feeding primarily on fish had somewhat to significantly
higher PCB levels than organisms at the bottom levels of the trophic webs.

82. Other field studies indicate a definite trend for PCB amplification
at the higher levels of the food web. Jensen et al. (1969) reported signifi-
cantly greater PCB concentrations in the top predators, than in other marine
organisms collected off the Swedish coast. Mowrer et al. (1977) reported
higher levels in cottid fish (sea robins) than in mussel in Puget Sound
(Table 48). Similarly, Goerke et al. (1979) found significantly higher PCB
levels in sole (Solea solea) than in invertebrates from the Weser Estuary
(Table 49). PCB concentrations in fish samples from Ora, Norway, were signi-

ficantly greater (Table 50), both on a wet weight and fat basis
most invertebrates (Bjerk and Brevik 1980). Crabs (Carcinus maenus) had PCB
levels that were not significantly different than those of gobies, however.

(1980) re her PCB concentr

than in cockle (Table 51). The trend toward biomagnification of PCB was not

clear in the Brisbane River Estuary, Australia (Shaw and Connell 1980), where

DDT and its derivatives

83. DDT in freshwater organisms. The significance of the food chain in

N 4 e

icaccumulation of DDT has been investigated in several laboratory studies.

[=int

Macek and Korn (1970) found that brook trout (Salvelinus fontinalis) accumu-
lated significantly more DDT from food than from water. At DDT levels in food
(diet pellets containing 3 ppm DDT) and water (3 pptr) similar to those ob-
served in nature, total uptake of DDT from food over a 120-day exposure period
was about two orders of magnitude greater than that from the water (Figure 5).
Fish exposed separately to DDT in the water and via food accumulated 3.6 and
35.5 percent, respectively, of the total available DDT. Since the DDT level
in food is generally greater than in the water, the authors concluded that

food is the major source of DDT for aquatic organisms. Hamelink, Waybrant,

and Ball (1971) reported that the food chain was less i

reported tha mportant in DDT bioac-

cumulation than direct exchange of DDT between the water and fats, based upon

differential solubility. The food-chain study was based upon a global con-

sented demonstrate biomagnification of DDT, regardless of which route of entry

(food or water) was more important (Table 53).
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Figure 5. Total residues (DDT, DDD, DDE) accumulated by brook trout

exposed for 120 days (from Macek and Korn 1970). Reprinted with

permission from the Journal of the Fisheries Research Board of

Canada, Vol 27, p 1497, Copyright 1970--Fisheries and Oceans Scien-
tific Information and Publication Branch

leave a confusing picture of the behavior of DDT within the freshwater food
web. Data from Tule Lake Wildlife Refuge (Table 54) show generally higher
levels of DDT in fish (chubs) than in other biotic components of the ecosystem
(Godsil and Johnson 1968). Widely varying levels of DDT with sampling date
and inconsistent sampling of the various biotic components over time preclude
any valid conclusion that DDT biomagnified within this ecosystem. Paasivirta
et al. (1983) reported that mean DDE concentrations in Finnish lakes were
highest in plankton and decreased progressively from roach to pike, apparently
the top predators in these lakes. Table 40 shows that DDE levels varied
widely and probably were not statistically different in the three components

of the lake ecosystem.
85. Mack et al. (1964) reported that DDT residues in fish from various

lakes in New York were generally highest in the top predators and lower in

other species. Table 55 shows this trend for DDT in fishes at the Taughannock
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collected simultaneously to constitute a legitimate trophic chain). Veith

(1975) similarly reported higher average concentrations of DDE and total DDT

sible biomagnification of DDT and its derivatives within fishes in this system
(Table 39). Comparatively large standard deviations suggested either that DDT
in different fish species varied widely with sampling location and/or date or
that there were very few significant differences in DDT levels across the en-
tire food chain. Tsui and McCart (1981) found no evidence for the biomagni-
fication of DDT in fishes from Cold Lake, Alberta. Table 56 shows that total
DDT concentrations in muscle tissues of pike were similar to those in cisco,
whitefish, and suckers. When average DDT levels were reported on a fat basis,
however, DDT appeared to biomagnify, as DDT and its derivatives concentrate in
the fat fraction. Concluding biomagnification of DDT on the basis of concen-
trations in fats may be misleading, as can be shown by the data of Bulkley,
Leung, and Richard (1981). Table 57 shows the percent body fat and whole-body
levels of DDT in seven species of fish from the Des Moines River. The hi
body burdens of DDT were in the larger predators (walleye, catfish, and bass),
all of which contained relatively low amounts of body fat, in contrast to
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would indicate biomagnification of DDE in aquatic organisms in three Kenya
lake drainage systems (Table 58).
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suggests that DDT may biomagnify within marine food webs. Goerke et al.
(1979) found generally higher levels of DDE and DDD in common sole (Solea
solea) in the Weser Estuary of the North Sea. There was no obvious pattern
that would suggest a relationship between DDD or DDE levels and invertebrate
trophic levels, however (Table 49). Courtney and Langston (1980) reported
substantially higher levels of DDT and its metabolites in flounder than in
cockles (Table 51). Basturk et al. (1980) found similarly that the level of
DDT and DDE residues was generally greater in fishes than in the inverte-
brates. Table 45 shows that, although the ranges overlapped, mean and maximum
DDT residues were significantly higher in two species of mullet and in goat-
fish than in either shrimp or limpets.

87. Studies using Cs:K ratios to assign trophic levels indicate that

S
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the pattern is not entirely clear. Young and Mearns (1979) found substanti-
ally higher DDT levels in scorpionfish and sanddab than in molluscs and crus-
taceans in the Palos Verdes food web (Table 59). Yellow crab, however, had
higher DDT levels than did boccacio, supposedly at the top trophic level. 1In
the Salton Sea and Newport Bay food webs, however, no such relationship
existed. The correlation between percent lipids and total DDT was good in the
Newport Bay food web. If mullet, which had both the highest lipid content and
highest DDT levels, were not included, there would be a definite trend toward
biomagnification of DDT at Newport Bay. Lipid and DDT content were poorly cor-
related in the other two food webs, however. A subsequent study (Schafer

et al. 1982) showed generally higher DDT levels in top predatory fishes than
in invertebrates (Table 47). The high DDT concentrations (24.8 ppm) found in
sea lions in the California coastal pelagic food web probably reflect their
high lipid content and the relatively impervious integument required for a par-
tially terrestrial existence. The low DDT levels in basking sharks and blue
whales very likely reflect both their diet (plankton) and their habit of liv-
ing in deep waters, often far from the more contaminated environments.

88. Other field studies indicate that biomagnification of DDT does not
occur to any great extent within most marine invertebrate and fish food webs.
In the Gulf of Mexico and the Caribbean Sea, DDT levels (Table 43) in the
muscle tissue of large fishes generally were lower than those in invertebrates
and those in smaller fishes (Giam et al. 1972). Levels in livers usually ex-
ceeded those in the muscles. A comparison of DDT levels (Table 44) in mussels,
crabs, shrimps, and fish from the Lower Medway Estuary, Kent, also showed no
trend toward biomagnification (Wharfe and van den Broek 1978). The level of
DDT in fish livers exceeded that in muscle tissue by about two orders of mag-
nitude. Bjerk and Brevik (1980) showed similarly that DDT levels in fish were
not significantly greater than those in invertebrates upon which they feed
(Table 13). Levels of DDT in fats were generally about two orders of magni-
tude greater than those in whole tissues. Biomagnification did not occur
either on the basis of DDE in fats or DDE in whole tissues. Robinson et al.
(1967) reported DDT levels ranging from 0.003 to 0.16 ppm in invertebrates and
0.012 to 0.080 ppm in fish (Table 60). Woodwell et al. (1967) ranked organ-
isms in the Carmans River Estuary, New York, according to increasing DDT
concentrations. The highest DDT concentrations in water-breathing animals

were found in three species of fishes (mummichog, flounder, and chain
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pickerel), with lower concentrations in the other fauna (Table 61). Jensen
et al. (1969) found that DDT levels generally increased from mussels to fish
in marine species along the Swedish coast (Table 62).

Other organochlorine pesticides

89. Dieldrin and endrin. The available data on these insecticides show

a somewhat confusing, if not contradictory, picture of the behavior of these
chemically similar compounds within aquatic food webs. Reinert (1972) com-
pared the uptake of dieldrin from water and food in an alga-Daphnia-guppy food
chain. Daphnia magna exposed to dieldrin in water containing algae (Scenedes-
inus obligquus) accumulated slightly less dieldrin than from exposure to diel-
drin in water alone. The dieldrin levels in water and algae, respectively,
were 2.2 to 4.4 ppb and 4.2 to 7.5 ppm. Guppies fed equal daily rations of
Daphnia containing different dieldrin concentrations accumulated dieldrin con-
centrations that were directly proportional to the concentrations in the
Daphnia. Figure 6 shows that the major source of dieldrin for guppies was
water, however. In another laboratory study, Petrocelli, Anderson, and Hanks
(1975) demonstrated the uptake of dieldrin by blue crabs (Callinectes sapidus)
fed for 5 to 10 days on clams (Rangia cuneata). Table 63 shows that the up-
take of dieldrin from food was significant. The authors stated that biomagni-
fication of dieldrin was possible.

90. TField-collected data also present an unclear picture of biomagni-
fication of these compounds. Robinson (1968) presented data on dieldrin
levels in organisms at various trophic levels within an unspecified marine
ecosystem. Figure 7 shows that the average dieldrin levels were similar
within the various trophic levels of the obligate aquatic fauna. Another
study by Robinson et al. (1967) reports dieldrin levels in various marine
organisms from off the Northumberland coast. Dieldrin levels increased from
algae to microzooplankton and then fluctuated widely throughout the higher
trophic levels (Table 60). The dieldrin levels in fishes varied from 0.002 to
0.038 ppm. Warfe and van den Broeck (1978) showed high levels of dieldrin in
molluscs (Mytilus edulis) with lower levels in crustaceans and fish. Table 44
shows that, on the basis of dieldrin in muscle, dieldrin does not biomagnify
through the trophic web. Very high levels were present in the livers of the
fish, however.

91. Other studies have reported dieldrin concentrations normalized on a

lipid basis. Goerke et al. (1979) reported a similar pattern for dieldrin in
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Figure 6. Dieldrin concentrations in guppies held in water containing

0.8-2.3 ppb dieldrin and in guppies held in dieldrin-free water but

fed two quantities of D. magna containing an average of 32 ppm

dieldrin. Each point represents the average for two fish. These

D. magna were raised in water with a dieldrin level of 1.8-2.5 ppb

(from Reinert 1972). Reprinted with permission from the Journal of

the Fisheries Research Board of Canada, Vol 29, p 1417, Copyright 1972--
Fisheries and Oceans Scientific Information and Publications Branch

animals from the Weser Estuary (Table 49). On either a whole-tissue or lipid
basis, dieldrin did not biomagnify within the food chain. Dieldrin concentra-
tions were about two orders of magnitude greater when expressed on a lipid
basis rather than on whole-tissue concentrations. Pick, de Beer, and van Dyk
(1981) investigated dieldrin residues in fats of several species of fish from
the Transvaal, South Africa. Data from the same locations indicate that diel-
drin residues probably do not biomagnify in fish (Table 64). Bulkley, Leung,
and Richard (1981) show data for fishes in the Des Moines River, Iowa, that
suggest that normalization on a lipid basis is not meaningful for dieldrin
(Table 57). Fishes containing a high percentage of body fat did not contain
correspondingly high levels of dieldrin residues. Dieldrin was not biomagni-
fied in this study.

92. Endrin residues in aquatic biota of the Tule Lake Wildlife Refuge
varied with time but showed a possible trend toward biomagnification (Godsil
and Johnson 1968). The highest endrin concentration (198 ppm) was observed in

chubs collected on 27 August 1965, but no other data were available for that
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date (Table 54). Chubs contained generally higher levels of endrin than other
organisms collected on the same dates. The data were insufficient to posi-
tively conclude biomagnification of endrin, however.

93. Lindane (BHC). Both laboratory and field studies indicate that

lindane (BHC) is not accumulated to any extent from food and, consequently,
does not biomagnify with aquatic food webs. Streit (1979) reported that
diatoms (Nitzschia actinastroides) grown in 10 ppb lindane absorbed lindane,
but the lindane was not transferred to any degree to freshwater limpets
(Ancyclus fluviatilis). TFigure 8 shows the concentration factor in limpets
feeding and not feeding on the algae. Hansen (1980) demonstrated rapid lin-
dane uptake from water by algae (Chlorella sp.), Daphnia sp., and the stickle-
back (Gasterosteus aculeatus). Figures 9 and 10 show that the uptake of
lindane (10 ppb) from water was substantially greater than that from food for
Daphnia feeding on algae and sticklebacks feeding on Daphnia, respectively.
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Figure 8. Concentration factors (CF) of lindane on a fresh
weight basis by Ancylus fluviatilis, fed ad libidum on con-
taminated algae. During a 2-day period, feeding (open
circles) and non-feeding limpets (solid dots) were compared.
Their CF values were not significantly different. Values of
feeding specimens are represented by arithmetic means and
standard deviations (from Streit 1979). Reprinted with per-
mission from Archiv fir Hydrobiologie, Suppl., Vol 55, p 387,
Copyright 1979--E. Schweizerbart'sche Verlagsbuchhandlung

Field studies by Tsui and McCart (1981) indicate no trend toward biomagnifica-
tion of BHC in the fishes of Cold Lake, Alberta. Table 56 shows similar con-
centrations of lindane in pike as in other fishes. Likewise, Pick, de Beer,
and van Dyk (1981) noted similar levels of BHC in fishes from the Transvaal of
South Africa (Table 64).

94. Kepone and mirex. Laboratory studies indicate that these two per-

sistent, structurally similar insecticides may be absorbed either through the
water or from contaminated food. Bahner et al. (1977) examined kepone trans-
fer in algae-oyster and plankton-mysid-fish food chains. In both food chains,
kepone was transferred up the food chain via food. The average kepone resi-
dues in algae following 24 hr of exposure to kepone and in oysters fed for

14 days on contaminated algae were 34 and 0.21 ppm, respectively. In the

plankton-mysid-fish food chain, however, substantial quantities of kepone were
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passed from the plankton (brine shrimp) through the mysids to the fish (spot).
Table 65 shows that mysids feeding on plankton accumulated about half the
level of kepone in the food. Spot fed for 30 days on contaminated mysids
accumulated kepone to levels about 85 percent of that in the food. This work
was continued by Schimmel et al. (1979), who reported the uptake of kepone by
blue crabs (Callinectes sapidus) fed for 28 days on oysters contaminated with
0.25 ppm kepone. Figure 11 shows that kepone uptake was similar whether via
food alone, food and 0.03 ppb kepone in the water, or food and 0.3 ppb kepone
in the water. No significant loss of kepone occurred during a 28-day depura-

tion period. A model for predicting kepone accumulation has been developed
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Figure 11. Bioaccumulation of kepone in muscle tissues of blue crabs

(Callinectes spp.) fed oysters contaminated with 0.25 ug/g of the

insecticide for 28 days followed by a 28-day period of depuration.

The uptake curve (dark line) and the 95-percent confidence interval

(lighter lines) represented are a composite of three homogeneous

curves representing uptake in crabs fed: (1) 0.25 pg/g kepone in

oysters and control seawater, (2) 0.25 pg/g in oysters and 0.03 pg/¢

in seawater, and (3) 0.25 pg/g in oysters and 0.3 ug/£ in seawater

(from Schimmel et al. 1979). Reprinted with permission from Estuaries,
Vol 2, p 12, Copyright 1979--Estuarine Research Foundation
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ies by Skaar et al.
(1981) confirmed the uptake of kepone and mirex by bluegills from food (Daph-
nia). Figure 12 shows significantly greater uptake of mirex than kepone by
bluegill feeding on contaminated Daphnia. This difference appeared to be the
result of significant depuration of kepone competing with accumulation. Mirex
levels in bluegill did not decrease over a 28-day depuration period.

95. Atrazine. The herbicide atrazine has not been shown to accumulate
extensively in aquatic food-chain organisms. Streit (1979) indicated that
little atrazine was transferred via feeding on atrazine-contaminated algae.
The concentration factors for atrazine in limpets were similar regardless of
whether or not the limpets were feeding (Figure 13). McEnerney and Davis

(1979) demonstrated trophic transfer of 14C-labelled atrazine from Spartina
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Figure 12. Mean accumulation of kepone and mirex by bluegills
from food (Daphnia) over a 28-day-period. Vertical bars show
standard deviation (from Skaar et al. 1981). Reprinted with
permission from the Canadian Journal of Fisheries and Aquatic
Sciences, Vol 38, p 935, Copyright 1981--Fisheries and Oceans
Scientific Information and Publications Branch
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Figure 13. Concentration factor (CF) of atrazine in limpets on a

fresh weight basis without feeding (solid dots) and when feeding

(open circles: arithmetic mean and standard deviation of single

values) (from Streit 1979). Reprinted with permission from

Archiv fiir Hydrobiologie, Suppl., Vol 55, p 384, Copyright 1979--
E. Schweizerbart'sche Verlagsbuchhandlung

alterniflora detritus to fiddler crabs (Uca pugnax). The authors indicated
that atrazine and atrazine metabolite levels decreased from detritus to crabs.

96. Endosulfan. Very little information is available regarding the up-
take of endosulfan. The data available suggest that endosulfan does not bio-
magnify in marine organisms. Goerke et al. (1979) reported a slightly higher
mean level of endosulfan in sole than in invertebrates, but the level in sole
was not significantly different than in the clam, Mya arenaria (Table 49).
Pick, de Beer, and van Dyk (1981) reported 5.88 ppm endosulfan in yellowfish,
1.09 ppm in barbel, and 0.17 ppm in kurper (Table 64).

Miscellaneous organochlorine compounds

97. Chlorinated phenols. Very little aquatic food-chain information is

available for the chlorinated phenolic compounds. Paasivirta et al. (1980)

reported the levels of several chlorinated phenols in the biota of lakes in
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able 66 shows that, of the six chlorophenols examined, none of the

Finland.
compounds biomagnified. The mean levels of the different compounds frequently
were higher in pike or roach than in mussels; sponges, or plankton. Wide
standard deviations (and coefficients of variation) indicate that chlorophenol
concentrations in the top trophic levels are not significantly different than
those at lower levels.

98. Chlorinated benzenes. Evidence available suggests that the chlori-

nated benzene compounds probably do not biomagnify in aquatic systems. Macek,
Petrocelli, and Sleight (1979) exposed bluegill for 35 days to TCB (1,2,4-
trichlorobenzene) via aqueous and dietary routes and concluded that the diet
did not contribute significantly to the TCB body burden in bluegill (Table 67).
Bjerk and Brevik (1980), however, showed somewhat higher levels of HCB (hexa-

chlorobenzene) in flounder than in gobies and mussels (Table 50). The levels

not si

Similarly, Tsui and McCart (1981) found no evidence of HCB biomagnification in

'fishes from Cold Lake, Alberta (Table 56). Paasivirta et al. (1983) found no

Polynuclear aromatic hydrocarbons

99. Laboratory studies have indicated trophic transfer of polynuclear

- < 2 PO, Py DALY Fannvn £ P . Tacade Lo Aot san o
aromatic h‘y"dLGCaLuuuS (PAH) from food to consumer, but the question o

[
]

or not biomagnification occurs within aquatic food webs remains unresolved.
Dobroski and Epifanio (1980) found significant uptake (18.6 ppm) of benzo[a]-
pyrene (B[a]P) by larvae of the clam, Mercenaria mercenaria, fed for 9 days on
algae (Thalassiosira pseudonana) containing 42.2 ppm of Bl[a]P. At 9 days up-
take was still linear, suggesting that biomagnification of B[a]P might occur
(Figure 14). Significant depuration occurred within 24 hr after feeding
ceased, however. Similarly, Dillon (1982) demonstrated significant dietary
accumulation of dimethylnaphthalene (DMN) in grass shrimp (Palemonetes pugio)
fed for 32 days on contaminated brine shrimp (Artemia sp.). Table 68 shows
the levels of DMN in brine shrimp and grass shrimp following exposure and
after a recovery (depuration) period. The data suggest that DMN might bio-

magnify in marine invertebrates. A field study (O'Connor, Klotz, and Kneip
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phenanthrene, anthra-
cene, biphenyl, and total PAHs) do not biomagnify within aquatic systems
- (Table 69).
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Figure 14. Accumulation and depuration of B[a]P by larvae of the
clam Mercenaria mercenaria. Line A represents accumulation of

1 C-benzo[a]pyrene by larvae fed contaminated algae; line B repre-
sents retention of 14C—benzo[a]pyrene by larvae after 24 hr depura-

tion; line C represents retention of 14C-benzo[a]pyrene by larvae

after 48 hr depuration (from Dobroski and Epifanio 1980). Reprinted

with permission from the Canadian Journal of Fisheries and Aquatic

Sciences, Vol 37, p 2321, Copyright 1980--Fisheries and Oceans
Scientific Information and Publications Branch
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Summary

100. Food-chain studies with gill-breathing marine and freshwater ani-
mals indicate that food may contribute to the body burdens of a number of
chlorinated and nonchlorinated organic compounds. Those which appear to have
potential for biomagnification in aquatic food webs are the PCBs, kepone and
mirex, benzo[a]pyrene, and naphthalenes. As in the case of the heavy metals,
the data on these organic contaminants were frequently contradictory.
Although top predatory fishes sometimes contained higher levels of specific
contaminants than other members of the food web, the relationship between con-
taminant levels in the tissues and an organism's position in the food web was
not clear. The apparent inconsistency in the data may reflect a number of
factors including the mobility of the top predators, age and size differences,
inadequate understanding of the feeding habits of different species (particu-
larly with respect to the changing of feeding habits at different stages of
the life cycle), imprecision in the assignment of trophic levels, and inade-
quate sampling and analytical procedures. Compounds which probably do not
biomagnify include DDT (and its derivatives), lindane, atrazine, endosulfan,
chlorinated phenols, chlorinated benzenes, and, probably, most of the PAls,
including phenanthrene, anthracene, and biphenyl. Relatively little informa-
tion is available regarding the behavior of most of these compounds in aquatic
food webs, however. Consequently, any absolute statement regarding biomagni-

fication of these contaminants must be reserved until further data are

available.
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PART III: CONCLUSIONS AND RECOMMENDATIONS
Conclusions

101. The information reviewed in this document indicates that biomag-
nification of contaminants is not a dramatic phenomenon in marine and fresh-
water food webs. Most heavy metals and organic compounds probably do not
biomagnify over several trophic levels in aquatic ecosystems. Those contami-
nants which may have the potential to biomagnify include methylmercury, PCB,
benzo[a]pyrene, naphthalenes, and possibly kepone and mirex. As the biologi-
cal availability of contaminants from sediments should be similar regardless
of whether or not these sediments have been dredged and placed in an open-
water disposal site, it is unlikely that the open-water disposal of contami-
nated dredged material will cause any widespread ecological perturbations due
to biomagnification.

102. Most of the evidence for the existence or non-existence of biomag-
nification within aquatic food webs has come from highly circumstantial and/or
marginally relevant data. That which is known about the behavior of a very
few specific contaminants (e.g., Cd, Pb, Cu, Hg, DDT, PCB, etc.) in aquatic
ecosystems has been extrapolated to be all-inclusive of the general groups of
compounds or elements to which these contaminants belong. The use of poor
experimental design also has rendered a considerable body of data essentially
useless. Many potentially good studies have been compromised either by poor
data analysis or by unwillingness to reject a soundly defeated hypothesis.
Consequently, before concluding that a given contaminant does or does not bio-
magnify, research is needed using carefully planned experimental designs that
directly address the question at hand and produce results that are accurate
and readily repeatable. Before concluding for or against biomagnification,
laboratory data also must be compared with field data. On the basis of the
literature review herein, several important ideas have emerged that will add

credibility to the results of future research. These are summarized below.

Recommendations

103. The following are the reviewer's recommendations for improving the
quality of laboratory and field-collected data related to the movement of con-

taminants in aquatic food webs.
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Laboratory studies

a.

o
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I
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For studies involving organic compounds, concentrate on those
which have low water solubility and high fat solubility.
Report the fat content of the organisms. Food-chain studies
indicate that the tendency for compounds to biomagnify is
inversely proportional to their water solubility (Hamelink

et al. 1971; Geyer et al. 1982).

Avoid the use of organic solvents, carriers, chelators, or any
other compounds that enhance the solubility and/or availabil-
ity of a contaminant to the target organism. Using such
"solubilizers' may result in uptake characteristics that do
not occur under natural conditions and lead to misinterpreta-
tion of the potential consequence of environmental exposure.
Data from such studies are responsible for many of the contra-
dictions seen in the literature on the relative importance of
uptake from food versus direct absorption (bioconcentration).

Use exposure levels and durations that are representative of
those the organism would encounter in nature, either in its
food or in its physical environment.

Use organisms for food-chain studies that actually are repre-
sentative of those in a natural ecosystem. If the top preda-
tor is a cold-water species (e.g., rainbow trout), do not feed
it on a warm-water species (e.g., bluegill) or a tropical spe-
cies (e.g., guppies).

Remember that environmental conditions during exposure are
important. Constant temperatures rarely occur in nature.
Spigarelli, Thommes, and Prepejchal (1983) demonstrated
clearly that uptake is affected by temperature regime (con-
stant versus cyclic, as in nature). Organisms may respond to
temperature, light, and tide (diurnal and diel cycles) and,
consequently, behave differently in the laboratory than in
nature. Laboratory conditions of exposure should resemble
those in the organisms' natural habitat as closely as pos-
sible, so as not to disrupt its natural cycles. Collecting an
organism in the late fall and subjecting it suddenly to long
day lengths, bright light, and warm temperatures of summer
conditions may have adverse effects on its physiology and life
cycle and, due to metabolic perturbations, cause abnormal be-
havior under laboratory conditions during experimentation.

Ensure that laboratory studies concerned with biocaccumulation
also look at depuration of the contaminant. Use flow-through
systems to maintain constant conditions during exposure or
depuration.

Consider carefully the effect of the chemical species (i.e.,
form) of a contaminant upon its bioaccumulation, partitioning
within various tissues, and persistence, when designing the
experiment.

Consider the fact that the organism's requirement for an es-
sential metal (e.g., Cu, Se, and Zn) may affect its ability
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Field studies

a.

k=2
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[="

to accumulate and depurate that metal as well as other
contaminants.

Report radioisotope tracer data in terms of concentration (ppm,
ppb, etc.) as well as in terms of specific activity whenever
using radioisotope tracers to demonstrate the movement of con-
taminants in artificial food chains. Also report the ratio of
radioactive to non-radioactive contaminant in each link of the
food chain, both before and after introducing the radioisotope
tracer.

Determine initial background levels of contaminants in experi-
mental organisms. Without this information, uptake studies
are meaningless.

Determine trophic levels (Mearns 1982) carefully using well-
known and accepted methods, such as stable iosotope ratios, to
assign quantitatively the position of an organism within a
food web. Several acceptable techniques are available, in-
cluding Cs:K ratio (Young and Mearns 1979; Schafer et al.

1982), 13C:IZC (13carbon:12carbon) ratio (McConnéughey and

McRoy 1979; Rau 1982), and 15N:14N (lsnitrogenzlanitrogen)
ratio (Rau 1982). The use of stable isotope ratios to assign
position in a trophic web is based upon the observation that
the relative proportion of the heavier isotope increases with
trophic level. This may be due to preferential assimilation
(i.e., uptake and retention) of the heavier isotope by a con-
sumer, preferential loss of the lighter isotope from the con-
sumer's tissues (e.g., through metabolism), or a combination
of both (Rau 1982). As the diet of an organism may change
dramatically during its life cycle, its position in the tro-
phic web also may change. Aquatic organisms, thus, may appear
to occupy many trophic levels simultaneously. Traditional
methods of assigning level I to the producers (i.e., plants),
ITI to herbivores, III to primary carnivores, etc., become con-
fusing and untenable, particularly as the food habits of many
species are not clearly defined. Assignment of trophic levels
using isotopic ratio techniques seems to circumvent many of
these problems, however.

Sample all trophic levels including the microplankton, sedi-
ments, and water. The sampling should be uniform with respect
to date and location and be done at regular time intervals to
allow for seasonal effects. Sufficient numbers of organisms
should be collected at each trophic level to ensure that the
range of data values is representative of the species as a
group. Samples also should be grouped by size class (within
species), due to changes in position in the food web with age.

Collect regular data on the physicochemical conditions (espec-
ially salinity, temperature, pH, alkalinity, turbidity, conduc-
tivity, organic matter, etc.) at each sampling station and date.

Record information on size (weight and body length) and, if
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All studies
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possible, age (fish), sex, state of maturity, etc., for each
species whenever possible.

Obtain all data available from previous work at the same loca-
tion. (The U.S. Geological Survey and other groups publish
water resources data on nearly every major body of water in
the United States, including lakes, streams, rivers, and
estuaries.)

Determine species of prey in stomachs of fish, if possible,
and the concentrations of contaminants in the gut and feces.

The weight of food and feces also should be determined when-
ever possible.

Be sure the experiment is properly designed to answer the spe-
cific question. See a statistician before beginning, if neces-
sary. Many of the papers reviewed herein did not answer the

questions that were proposed, due to improper experimental
design.

Use an adequate number of specimens to ensure that data
account for the natural variation within the population. When
n = 1, no valid conclusions can be made about anything.

Express the contaminant concentration in an organism on a
whole-body, oven-dry-weight basis. Biomagnification, by defi-
nition, cannot be demonstrated using data reported on either an
organ-by-organ or a tissue-fraction basis for one species, and
whole-body basis for others. Exclude the gut contents, wher-
ever possible, so as to include only the actual body burden.
Using dry weight is very important, because of the inherent
variability in water content both within and among species.
Differences in water content may be the consequence of physio-
logical and/or environmental changes, taxa-specific differ-
ences (i.e., those due to different proportions of hard tissues
such as bone, carapace, shells, etc., in different taxonomic
groups), and the loss of water during weighing and handling of
specimens. The use of fresh weight may lead to gross errors
when estimating contaminant concentrations in organisms. Based
upon the data reviewed herein, trying to prove or disprove the
biomagnification of lipid-soluble compounds (i.e., organic
lipophilic compounds) based solely upon parts per million in
lipids is unrealistic. Physiologically and toxicologically
lipids or fats may be the most important reservoir of lipophi-
lic compounds. Lipid (or fat) content, however, varies widely
with season, species, age, body weight, and physiological con-
dition of an organism. Also, the correlation between the body
burden of contaminants and fat content is not always good.
Consequently, the reporting of contaminant levels on a lipid
basis sometimes may be misleading. If contaminant levels are
to be specified on an organ, tissue, lipid fraction, wet
weight, or some other basis, the oven-dry weights of these
organs and the whole-body dry weights should be specified, in
order to facilitate the use of the data on a comparative basis.
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Table 6
Trace Element Concentrations (ppm) in Marine Organisms of

Card Sound, Florida*

Species Cu Zn Cd Pb
Macrophyta
Thalassia testudinum 1.6 £+ 0.33 18 * 1.3 0.20 * 0.021 0.72 £ 0.16
Laurencia poitei 12 £ 2.4 34 £ 5.1 0.20 £ 0.047 0.59 £ 0.16
Penicillus capitatus 1.2 £ 0.17 12 £ 3.5 0.11 * 0.012 1.1 £ 0.21
Halimeda incrassata 0.70 £ 0.26 3.7 £ 1.2 0.16 £ 0.12 1.2 £ 0.56
Rhizophora mangle
Leaves (live) 1.3 £ 0.67 3.1+ 0.88 0.044 + ,028 0.39 £ 0.11
(dead) 5.8+ 4.6 2.3 0.52 0.24 %*0.11 0.79 £ 0.23
Seedlings in water 0.81 £ 0.79 2.2 + 0.58 0.017 = .0059 0.23 + 0.17
Decaying stems in 0.52 £+ 0.46 8.1 5.9 0.056 +* 0.055 0.099 £ 0.0072
water
Microphyta
Phytoplankton 12 £ 8.0 180 = 80 0.20 0.33
Epiphytes on Thalassia
blades
Macrofauna 21 £ 9.4 150 * 59 0.20 0.59
Detritivores and 7.6 £ 0.67 28 +20  0.19 * 0.08 0.39 £ 0.15
Carnivores
Sponges 3.7%*1.5 24 £ 9.8 0.44 + 0.18 0.36 £ 0.15

* Adapted from Gilio and Segar (1976). Reprinted with permission of the authors.
Values are expressed as mean metal concentration * standard error of the means on
the basis of ppm dry weight.
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Table 12
Concentrations (ppm) of Heavy Metals in Leaf Detritus, Tipula sp.

Larvae, and Feces, and Percent Body Burdens Associated

with Gut Contents¥*

Tipula larvae % Body Burden
Before Gut After Gut Associated With
Metal Leaf Detritus Evacuation Evacuation Feces Gut Contents
Cr 36.0 + 3.8 13.1 £ 1.0 14.2 £ 0.5 39.39 * 0.67 40.1 = 2.5
Hg 0.13 £ 0.03 0.17 £ 0.05 0.22 £ 0.06 2.155 * 0.084 73.8 + 10.0
Se 0.49 * 0.15 1.02 £ 0.13 0.95 £ 0.11 0.987 * 0.019 22.9 £ 3.0

Zn 36.5 + 9.6 90.1 * 6.6 106.4 £ 4.7 763.9 £ 216.5 66.4 £ 10.8

\

* Adapted from Elwood, Hildebrand, and Beauchamp (1976). Values are mean
metal concentrations expressed as parts per million dry weight * 2 standard
errors of the means.
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Ta

ble 13

Mean Concentrations (ppm) of Toxic Trace Metals in Water, Sediments, and

Biota of a Coal Ash Basin in South Carolina Before and After Dredging#®

Component

Metal Water Sediments Plants Invertebrates Vertebrates
As .06 (0.07) 20 (27) 4.2 (5.3) 2.1 (60) 0.5 (4.0)
cd .12 (0.09) 1.7 (3.8) 1.5 (0.9) 4.0 (2.5) 1.3 (0.9)
Cr .16 (0.20) 38 (34) 5.7 (2.9) 9.7 (3.5) 2.8 (5.8)
Cu .39 (0.40) 81 (32) 7.2 (14) 31 (67) 12 (38)

Hg .03 (0.02) 0.8 (0.8) 0.4 (0.4) 0.5 (0.2) 0.2 (0.3)
Se .10 (0.20) 6.1 (11) 1.8 (5.0) 2.6 (6.5) 9.4 (8.4)
Zn .39 (3.30) 6.4 (7.6) 5.0 (51) 15 (25) 12 (67)

* Adapted from Cherry and Guthrie (1977).

Reprinted with permission from

Water Resources Bulletin, Vol 13, p 1230, Copyright 1977--American Water

Resources Association.

Values shown are mean metal concentrations ex-

pressed as parts per million (authors did not designate whether on a wet
First value shown is before dredging; value in
parentheses is after dredging.

or dry weight basis).
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Table 15

Concentrations of Metals in Algae (Macrocystis pyrifera) and in

Feces of Crabs (Pugettia producta) Fed Algae, and Theoretical

Retention of Metals by the Crabs¥®

Average Concentration, ppm**

Metal Algae Feces

As 77.30 * 17.30 147.78 * 41.11
Ccd 2.27 £ 0.27 1.78 -
Cr 3.33 £+ 2.33 2.28 + 1.83
Cu 4.60 * 1.80 16.67 * 10.00
Pb 4.33 + 1.07 19.44 + 3.83
Zn 22.00 * 1.47 43.33 * 15.56

Total % of
Theoretical Ingested
Metal % Initial
Ingested/ Metal Metal
g Feces Remaining Retained
(ug)t in Feces Theoretically
463.80 31.9 68.1
13.62 13.1 86.9
19.98 11.4 88.6
27.60 60.4 39.6
25.98 74.8 25.2
132.00 32.8 67.2

e
~

Data adapted from Boothe and Knauer (1972).
*% Data were converted from micrograms of metal per gram ash weight by using
data for algae and feces were divided by
1.5 and 1.8, respectively, to convert to dry weight basis.

T Based upon the ratio 6 g algae consumed:1 g feces produced.

the authors'

conversion factors:
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Table 17

Arsenic Concentrations (ppm) in Plants, Fish, Fish Stomach

Contents, and Polychaete Worms from Waterman and Cockburn

Sound off the Coast of Western Australia®

Mean As
Organism Level, ppm Range
Algae
Ecklonia radiata 11.2 8.1 - 15.9
Seagrasses
Posidonia australis -- <0.1 - 0.22
P. ostenfeldi 0.59 --
P. sinuosa 0.51 0.42 - 0.59
Heterozostera tasmanica 0.35 --
Halophila ovalis 0.25 -~
Amphibolis griffithii -- <0.3 - 0.21
A. antarctica 0.19 0.16 - 0.21
Polychaete worms (collected by diving)
Eunicidae -- 23.0
Spionidae - 18.6
Aphroditidae -- 7.1 - 10.5
Glyceridae -- 12.7
Gut contents of school whiting (Sillago bassensis)
Polychaete (unidentified) -- 2.4 - 9.6
Polychaete (Eunicidae) -~ 2.4 - 31.3
Polychaete (Orbiniidae) - 14.6
Echinoderm (Holothuroidea) -- 4,1
Gastropod molluscs - 1.3 - 2.3
Fish (muscle)
Sillago bassensis (school whiting) 7.72 3.2 - 14.5
S. maculata (Trumpeter whiting)#*¥* 2.37 1.2 - 4.9
Kyphosus sydneyanus (buffalo bream) -- <0.025 - 0.6

* Adapted from Edmonds and Francesconi (1981). The authors indicated that
fish muscle was analyzed as wet weight, but did not indicate the basis for
other organisms. The reviewer, therefore, assumes that all values were
given as wet weight.

#*% S. maculata collected at Cockburn Sound; all other species collected at
Waterman.
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Table 18

Heavy Metals (ppm) in Tubificid Worms Fed Contaminated

Bacterial Suspensions®

Metal Worms, Initial®* Bacteria Worms Bacteria Worms Bacteria Worms
Cr 19.10 109.09 3.92 983.00 14.08 2850.00 29.86
Cu 80.70 213.22  236.17 765.87 397.05 1068.00 621.19
Pb 151.14 119.01 178.95 409.56 559.18 720.80 568.31
Zn 529.80 206.61 261.86 1648.46 685.08 2010.00 868.33

* Adapted from Patrick and Loutit (1976).
tions expressed as parts per million dry weight.

*% Field collected and washed.
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Table 20
Heavy Metal Concentrations (ppm) in Spring Water, Algae, and

Microcrustacea in a Laboratory Microcosm*

Component Ag As Cd Cr Cu Hg Ni Pb Se Sn Zn
Water (ppb) 0.0068 0.24 0.016 0.022 3.8 0.13 0.89 0.85 0.03 2.0 12.
Algae

Mixed culture 4.6 3.4 1.34 1.2 156.5 4.25 2.7 10.0 1.9 20.0 338.7

Euglena gracilis 4.7 3.6 1.38 1.4 283.2 4.20 1.8 12.6 2.0 23.5 304.
Microcrustaceans

Daphnia pulex 0.78 2.3 1.34 1.3 70.0 2.68 4.2 9.8 2.1 4.2 134.6

Daphnia magna 0.46 2.2 1.24 0.6 77.5 3.30 3.6 7.2 1.6 1.2 102.0

* After Cowgill (1976). Values are mean metal concentrations reported as parts per

million dry weight.
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Table 26

Mercury Levels (ppm) in Fish and Benthic Invertebrates

from the North Fork Holston River®

Total Hg
in Benthic Total Hg Total Hg
Year Station Invertebrates in Rock Bass in Hog Sucker
1974 McCrady 0.051 0.493 0.409
Below ponds 1.550 1.623 1.420
Hayters 0.790 1.623 1.235
Kingsport 0.201 0.656 0.427
1975 Below ponds 2.028 2.140
Hayters 0.556 1.661
Kingsport 0.217 0.921 0.371
Chatham 0.052 0.213 0.198
Neil 0.043 0.322 0.223
McKenna 0.876 1.814 2.066
Hines 0.416 1.290 1.110

* After Hildebrand, Strand, and Huckabee (1980). Reprinted with permission
from the Journal of Environmental Quality, Vol 9, p 397, Copyright 1980--
American Society of Agronomy, Crop Science Society of America, and Soil
Science Society of America. Values are mean metal concentrations expressed
as parts per million wet weight.
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Table 27

Mercury in Fish From Northwestern Ontario¥®

Locality/Species

Clay Lake
Burbot
Walleye
Sucker

Wabigoon River
Northern pike
Walleye
Sucker

Ball Lake
Northern pike
Rock bass
Walleye

Tide Lake
Northern pike
Walleye

Indian Lake
Walleye

Grassey Narrows
Lake

Walleye
Tetu Lake
Northern Pike
Walleye
Sucker
Rock bass
Wagigoon Lake
Northern pike
Walleye

10

[ =

Mercury Residues, ppm

Body Weight, g

X

21

15.

15.

.95
74
.13

17

6.80
4.19

.73

6.22
4.51

3.74
3.39

© M W

—

.71

.79

.25
.50
.00
.55

.37
.78

Range X
19.10-24.80 1,692
12.30-19.60 1,350

2.29-3.75 710
8.57-27.80 1,560
0.50-10.40 954
0.64-8.94 745
1.61-20.00 2,016
1.14-10.90 1,083
0.52-8.74 1,069
2.91-4.88 1,908
0.28-12.70 2,563
2.39-3.10 1,071
2.75-2.84 1,110
2,640

1,190

800

1,800

0.94-1.88 2,232
0.60-1.10 1,245

Range

1,355-2,150
1,025-2,040

575-1,050

510-2,700
160-1,490
570-1,060

1,520-2,900

650-1,685
410-1,550

1,675-2,365
1,530-4,220

715-1,250

725-1,680

1,570-3,160

870-2,330

* After Fimreite and Reynolds (1973).

Reprinted with permission from the

Journal of Wildlife Management, Vol 37, pp 64, 65, Copyright 1973--The

Wildlife Society.

wet weight of lateral musculature.
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Table 28

Mercury Residues in Lateral Muscle of Fish from Canadian Waters

Where Mercury Contamination was Suspected®

Mercury
Residues, ppm Body Weight, g
Locality/Species N X Range X Range
PINCHI LAKE, B. C. .
Salvelinus namaycush (lake trout) 2 5.78 1.07-10.5 1700 1700-1700
Mylocheilus caurinus (peamouth) 1 0.84 50
Prosopium williamsoni 4 0.65 0.30-1.50 307 230-429
(mountain whitefish)
Salmo gairdnerii (rainbow trout) 4 0.38 0.25-0.68 243 161-322
LAKE HURON, ONT., south end
Stizostedion v. vitreum (walleye) 8 1.08 0.58-2.74 807 725-984
ST. CLAIR RIVER, ONT.
Ambloplites rupestris (rock bass) 6 2.80 0.55-4.64 646 55-368
Lepomis gibbosus (pumpkinseed) 3 2.64 0.26-7.09 64 46-95
Morone chrysops (white bass) 1 1.62 75
Stizostedion v. vitreum (walleye) 6 1.60 0.89-2.43 646 370-1018
Esox lucius (northern pike) 1 1.00 2265
LAKE ST. CLAIR, ONT.
Stizostedion v. vitreum (walleye) 8 2.88 1.29-5.01 819 363-1928
LAKE ERIE, ONT., west end
Stizostedion v. vitreum (walleye) 8 0.71 0.58-0.90 595 462-907
OTTAWA RIVER, ONT., downstream from
pulp mill
Stizostedion canadense (sauger) 10 1.48 0.47-2.73 144 23-389
OTTAWA RIVER, ONT., upstream from
pulp mill
Stizostedion canadense (sauger) 10 0.72 0.42-1.00 165 117-217
ST. MAURICE RIVER, QUE., downstream
from chlorine plant
Stizostedion v. vitreum (walleye) 4 2.09 1.96-2.15 390 312-482
Catostomus catostomus 1 0.88 397
(longnose sucker)
Semotilus corporalis (fallfish) 2 0.84 0.73-0.94 128 114-142
Esox lucius (northern pike) 1 0.75 ‘ 312
Catostomus commersonii (white sucker) 4 0.73 0.52-0.95 118 4-454
Perca flavescens (yellow perch) 4 0.65 0.26-0.82 49 2-142
(Continued)

* After Fimreite et al. (1971). Reprinted with permission from Canadian
Field-Naturalist, Vol 85, pp 213, 214, Copyright 1971--Ottawa Field-
Naturalists' Club. Values are expressed as parts per million wet weight.
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Table 28 (Concluded)

Mercury
Residues, ppm Body Weight, g
Locality/Species N X Range X Range
ST. MAURICE RIVER, QUE., upstream from
chlorine plant

Stizostedion v. vitreum (walleye) 18 0.69 0.48-1.20 487 142-1988

Esox lucius (northern pike) 5 0.42 0.30-0.73 494 198-1448

Perca flavescens (yellow perch) 2 0.20 0.19-0.20 1. 1-2

Culaea inconstans (brook stickleback) 2 0.19 0.19-0.20 1 1-1
PORT ALBERNI, B. C.

Sebastes caurinus (copper rockfish) 4 0.60 0.07-1.13 636 332-870

Ophiodon elongatus (lingcod) 2 0.26 0.24-0.27 823 789-857
NANAIMO, B. C.

Sebastes caurinus (copper rockfish) 4  0.37 0.26~0.48 1130 765-1656

Ophiodon elongatus (lingcod) 1 0.08 871
HORSESHOE BAY, B. C.

Sebastes caurinus (copper rockfish) 1 0.18 353

Ophiodon elongatus (lingcod) 1 0.08 610
BAIE DES CHALEURS (Bathurst, N. B.)

Pseudopleuronectes americanus 2% 1.10 0.86-1.33 215

(winter flounder)

Anguilla rostrata (American eel) 4 0.32 0.28-0.38 205 129-324

Microgadus tomcod (Atlantic tomcod) 1% 0.18 100

Alosa pseudoharengus (alewife) 2% 0.10 0.10-0.10 81
BAIE DES CHALEURS (Dalhousie, N. B.)

Clupea h. harengus (Atlantic herring) 4 0.04 0.03-0.06 236 186-288

oo
w

P. americanus and A. pseudoharengus - two analyses of two pooled samples
each containing four fish. M. tomcod - one analysis of a pooled sample of

four fish.
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Table 29

Mercury Concentrations in Fishes from Three Northern Maine Lakes*

Mercury
Total Length Concentration
Lake and Species®¥ cm ppm
Eagle Lake
Lake Trout 18 - 69 0.13 - 1.11
Brook Trout 28 - 34 0.13 - 0.23
Lake Whitefish 25 - 51 0.30 - 2.17
Burbot 43 - 64 0.40 - 1.29
St. Froid Lake
Lake Trout 40 - 59 0.34 - 0.84
Brook Trout 24 - 43 0.08 - 0.58
Burbot 32 - 52 0.35 - 0.89
Rainbow Smelt 18 - 22 0.28 - 0.59
Cliff Lake
Lake Trout 35 - 47 0.10 - 0.23
Brook Trout 33 - 38 0.12 - 0.21

* From Akielaszek and Haines (1981). Reprinted with permission from the
Bulletin of Environmental Contamination and Toxicology, Vol 27, p 203, Copy-
right 1981--Springer-Verlag. Metal concentrations are expressed as parts
per million wet weight of muscle.

*% Rainbow smelt are forage species for whitefish, lake trout, and burbot.
The smelt were present in Eagle and St. Froid Lakes but were absent at
Cliff Lake.
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Table 30

Mean Concentrations of 203Hg7Accumulated in Experimental Oyster Tissues®
203 . 9 . N
Hg, pg/kg wet tissue #95% confidence limits**
Mercury Mercury
Oyster tissue Control reducer accumulator
Mantle fluid 3.5+ 2.2 9.7 £ 8.0 11.8 £ 7.3
Mantle 199.9 £ 173.0 511.4 *+ 357.8 405.4 * 215.0
Gills 647 * 538.7 1747.3 * 880.7 2849.9 + 1282.0
Viscera 216.4 + 177.7 463.2 *+ 393.0 335.7 £ 210.2
Adductor muscle 56.1 % 42.5 133.0 * 129.3 161.2 + 78.5
Whole oyster 201.4 * 163.5 312.4 + 238.0 463.0 + 258.4

* From Sayler, Nelson, and Colwell (1975). Published with permission,
Copyright 1975, American Society for Microbiology.

*% Average of eight oysters. Underlined values are significantly different
from controls.
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Table 31

Mercury Concentrations in Fish and Invertebrates in

North American Offshore Waters+®

No. Col- Mercury Content, ppm wet weight
lections Muscle Liver Whole
Analyzed** Range Average Range Average Animal
Fish
Bottom feeders
American dab 2 0.06-0.08 0.07 0.11-0.14 0.13
Atlantic cod 2 0.14-0.25 0.20 0.11-0.20 0.16
Atlantic wolf- 2 <0.05-0.15 0.08 <0.05-0.06 <0.05
fish
Blackbelly 1 0.22 0.22 0.40 0.40
rosefish
Black sea bass 1 0.08 0.08 0.18 0.18
Cusk 4 0.15-0.49 0.31 0.14-0.83 0.42
Fourspot 2 0.16 0.16 0.23-0.27 0.25
flounder
Gulf Stream 2 0.05 0.05 NDt ND
flounder
Haddock 2 0.05-0.09 0.06 <0.05 <0.05
Little skate 2 0.13-0.16 0.15 0.10-0.23 0.17
Longhorn 2 0.08-0.09 0.09 0.09-0.16 0.13
sculpin
Ocean pout 2 <0.05-0.11 0.07 <0.05-0.09 0.06
Red hake 2 <0.05-0.05 <0.05 <0.05-0.08 0.06
Striped sea- 1 0.35 0.35 0.38 0.38
robin
Thorny skate 2 0.21-0.26 0.24 0.09-0.15 0.12
White hake 2 0.10-0.12 0.11 0.12-0.16 0.14
Windowpane 1 0.10 0.10 0.12 0.12
flounder
Winter 3 0.06-0.14 0.09 0.07-0.18 0.11
flounder
Winter skate. 1 0.15 0.15 0.18 0.18
Witch flounder 2 0.07-0.10 0.09 0.13-0.16 0.15
Yellowtail 2 0.10-0.24 0.17 0.17-0.25 0.21
flounder
Pelagic feeders
Pollock 2 0.08-0.10 0.09 <0.05-0.06 <0.06
Redfish 2 0.10-0.20 0.15 0.15 0.15
Spot 1 <0.05 <0.05 <0.05 <0.05
(Continued)

* After Greig, Wenzloff, and Shelpuk (1975).
*% Each collection includes 610 animals.
¥ ND = no data.
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Table 31 (Continued)

No. Col- Mercury Content, ppm wet weight
lections Muscle Liver Whole
Analyzed Range Average Range Average Animal
Silver hake 1 0.09 0.09 0.10 0.10
Plankton feeders
American Shad 1 0.05 0.05 0.67 0.67
Atlantic 2 <0.05-0.09 0.06 0.26-0.28 0.27
herring
Mackerel 1 0.08 0.08 ND ND
Miscellaneous
Angel shark 1 0.08 0.08 <0.05 <0.05
Cuskeel 1 0.11 0.11 0.19 0.12
Spingy dogfish 8 0.07-0.53 0.32 <0.05-0.19 0.10
Invertebrates
Lobster 0.31% 0.60
Pandallid shrimp 0.09
<0.05
<0.05
Scallops <0.05
Squid <0.05
<0.05
<0.05
0.06

ote

* Lobster muscle sample from tail only.
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Organisms from the Mediterranean and Atlantic¥®

Hg Concentration
ol n

M8/ Kg
fresh weight Body weight, g
No. of _ _
Species Specimens X Range X Range Ocean
56000-79000

Belone belone 2 210 165-270 173.7 158.0-190.0 Med.

Loligo vulgaris 10 320 85-530 96.7 17.2-244.7 Atl.
10 100 85-130 74.4  45.4-124.1 North Sea

Sardina pilchardus 26 220 110-330 35.4 26.9-50.4 Med.

9 300 160-475 47.1  42.0-57.0 Med.

28 30 5-50 27.3 17.3-37.2 Atl

Engraulis encra- 20 105 70-140 16.1 13.2-21.0 Med.

sicholus 16 380 210-590 39.5 34.3-47.2 Med.

10 70 50-95 17.6  14.2-20.4 Atl.

Scomber japonicus 9 75 45-95 71.1 50.1-133.6 Atl.

Scomber scombrus 15 340 130-510 87.0 33.1-111.9 Med.
10 80 45-125 265.6 212.8-302.2 North Sea
5 330 160-550 312.3 234.5-372.0 North Sea
3 420 180-550 588.3 500.0-705.0 North Sea

Trachurus trachurus 5 1255  645-2210 225.0 170.4-299.0 Med.
3 725 315-1400 333.3 255.0-485.0 North Sea

Sarda sarda 10 460 180-815 1355.0 1060-1980 Atl.

Xiphias gladius 2 1260 620-1790 67500 56000-79000 Med.

* After Stoeppler et al. (1979). Reprinted with permission from Science of the Total
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Table 36

Retention of Ingested PCB's by Rainbow Trout®

Time, Weeks

12
16
20
24
28

32

Total

Ingested

Ave. ug of PCB

Consumed/Fish/ Total pg of PCB
4-Week Period Accum. /Fish
11 3
23 15
32 26
45 55
99 133
191 276
197 404
343 636

938

% Retention of
Total PCB Ingested

27

48
41
51
64
69
68

68

ota
w

From Lieb, Bills, and Sinnhuber (1974).
the Journal of Agricultural and Food Chemistry, Vol 22, p 641, Copyright

1974--American Chemical Society.

Reprinted with permission from
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Table 37
Effect of Duration of Exposure to Diets on the PCB Concentration

of Yellow Perch Fillets®

PCB Concentration of Fillets, ppm*¥*

Duration of Exposure, Weeks W-3 Experimental Diet Control Diet
0 0.11 0.10
3 0.18 0.12
6 0.29 0.11
9 0.53 0.14

12 0.56 0.14
15 0.48 0.10
18 0.55 0.13
22 0.56 0.11
26 0.59 0.10
30 0.69 0.17

ot

* From Sommer et al. (1982). Reprinted with permission from Archives of
Environmental Contamination and Toxicology, Vol 11, p 592, Copyright
1982--Springer-Verlag. Values for fillet PCB concentration are the means
of two to four fish, expressed as parts per million wet weight.

*% PCB concentrations were 0.2 and 1.8 ppm, respectively, in the control and

experimental diets.
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Table 38
Accumulation of PCB in Goldfish Via Exposure to PCB-Saturated Water

or Diet Containing 10 ppm PCB*

Route Wet PCB Concentration, ppm Wet Weight
of Weight  Extractable 2,5- 2,2',5- 2,4',5- 2,2'.,5,5'- 2,3',4',5~
Exposure Day g lipid, % di tri tri tetra tetra
Water 0 5.5 4.1 1 -- -- -- --
1 4.5 7.4 120 60 60 40 10
2 4.3 6.4 290 160 110 50 10
4 4.2 5.6 460 270 190 130 30
8 5.4 5.1 1120 770 490 320 70
13 3.2 9.2 2510 1820 1140 720 179
Mean Aqueous Concentration: 190 110 75 55 22
pg/L * 20%
Diet 10 2.8 1.8 0.321 0.536 0.714 0.643 0.821
20 3.5 2.7 0.514 0.857 1.2 1.29 0.943
30 7.3 1.9 0.274 0.274 0.411 0.521 0.548
40 6.2 2.4 0.500 0.677 1.52 1.55 1.42
50 3.2 3.3 0.313 0.469 0.563 0.719 0.625
60 4.2 3.5 0.857 0.929 1.52 1.86 1.67
70 3.3 3.4 0.879 0.485 1.45 1.15 1.24
80 2.2 4.4 1.50 1.73 2.50 2.86 2.64
90 5.3 2.4 0.434 0.472 1.51 1.70 1.79
100 3.4 3.4 0.706 0.529 2.59 2.29 2.65
110 4.9 3.0 0.469 0.367 1.43 1.39 1.63
120 3.6 2.4 0.278 0.361 1.11 1.39 1.67
130 6.1 2.8 0.393 0.459 1.41 1.57 1.72
140 4.9 3.3 0.367 0.510 1.29 1.39 2.00
150 3.8 2.5 0.553 0.658 1.97 2.13 2.79
* From Bruggeman et al. (1981). Reprinted with permission from Chemosphere,

Vol 10, pp 817, 822, W. A. Bruggeman, L. B. J. M. Martron, D. Kooiman, and
0. Hutzinger, Accumulation and Elimination Kinetics of Di-, Tri-, and Tetra-
Chlorobiphenyls by Goldfish after Dietary and Aqueous Exposure, Copyright 1981,

Pergamon Press, Ltd.
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Major Chlorocarbons in Fish, Lake Michigan--1971%
No. Fish HMean Fish Mean
Species Analyzed Weight, g Lipid, % PCB DDE IDDT

Alewife 85 100 6.5[3.9] 4.6[2.1] 1.7[0.8] 2.2[1.1]
Bloater 287 249 20.0[5.9] 6.0[2.2] 2.5{1.1] 3.8(2.8]
Brown trout 17 3,650 15.5[4.1] 7.3[2.8] 2.7[1.0] 4.2[1.6]
Carp 42 2,160 10.0[7.0] 4.2{3.6] 0.7(0.9]1 0.9(1.2]
Chinook salmon 21 3,100 5.0{3.9] 11.4[4.0] 5.2[1.5] 6.8[2.5]
Coho salmon 56 2,720 6.5(2.1] 11.5[5.7] 4.8[2.3] 6.3[2.8]
Lake trout 134 1,620 16.6{4.3] 15.5[3.3] 5.0[2.8] 7.1[3.7]
Vallaw narch YA 140 £ 111 71 g ofa £ 1 nfn 41 1 £y 1)
24 LUW poai == 120 Vedr|lr.7]) DO I.2] 1.V]V.VU] LUl X.1]
Rainbow trout 11 4,190 18.4(3.3] 9.3[4.1] 3.4[1.3] 4.2[1.8]
Redhorse sucker 16 902 8.6[1.2] 3.0[0.7] 1.6[0.5] 2.6[0.7]
Qonnl s N0 (-1 c oly ol A =32 Al n ofn 721 1 aAalfln 21
Smelt 38 o1 J.011.0] 2.711.33 0.610.435 1.210.0]
White sucker 51 1,130 5.9[2.8] 3.9[3.6] 1.0{0.5] 1.6[1.2]
Whitefish 43 1,170 17.6[4.4]) 3.0{1.9] 0.8[0.3] 1.4[0.6]

* After Veith (1975).

Expressions in brackets represent standard deviations.
Residues are expressed as parts per million wet weight.
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Table 41

Concentration Factors for PCB in Turbot Tissues Following

Uptake of PCB from Different Sources®

Muscle (Liver) PCB

External PCB Level on Concentration, ppm Concentration
Day 1 on Day 14/15 Factor
0.58 pg 17! seawater 2 (25) 6 (50) x 10°
100 ppm sediment 43 (469) 0.4 (4.7)
60 ppm sediment 59 (180) 1 (3)
1 ppm sediment 2 (22) 2 (22)
20 ppm food 4 (34) 0.2 (1.7)

ot

* From Courtney and Langston (1980). Reprinted with permission from
Helgolander Meeresuntersuchen, Vol 33, p 335, Copyright 1980--Biologische
Anstalt Helgoland.
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Table 42
Uptake of Chlorinated Paraffins and PCB from Food by

Juvenile Atlantic Salmon¥®

Days of feeding 33 109 181
Diet Residue** Lipid % Residue®* Lipid % Residue®* Lipid %
Control 0.30 1.03 nd¥ 0.65 nd¥t 0.47
Cereclor 42 10 pg/g 0.11 1.30 nd 0.69 nd 0.49
100 pg/g 0.51 1.22 nd 0.49 nd 0.34
Chorez 700 10 ug/g 0.29 1.13 nd 0.40 nd 0.29
100 ug/g 0.49 1.30 nd 0.56 nd 0.92
Aroclor 1254 10 ug/g 3.86%F 5.09 3.80%* 3.10 3.88%% 2.07
100 pg/g 13.9%F 5.30 24, 0%* 2.73 30.0%*% 2.69

* From Zitko (1974). Reprinted with permission from the Bulletin of
Environmental Contamination and Toxicology, Vol 12, p 410, Copyright 1974--
Springer-Verlag.

*% [Expressed as chlorine, micrograms per gram wet weight, unless stated
otherwise.

¥ Not detectable, <0.05 pg/g .
T+ Expressed as Aroclor 1254.
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Table 44

Comparative Chlorinated Hydrocarbon Levels (ng g-1 wet weight)

in the Lower Medway Estuary, Kent*

Organism Location DDT Dieldrin PCB
Mussel Mytilus edulis Medway 0-226 0-63 44-268
Crab Carcinus maenas Medway 0-50 0-23 0-142
Shrimp Crangon vulgaris Medway 2-82 1-21 0-275
Whiting Merlangius merlangus Medway muscle 5-17 0.6-6 16-96

liver 630-4240 175-1096 2500-10500

* After Wharfe and van den Broek (1978). Reprinted with permission from the
Marine Pollution Bulletin, Vol 9, p 79, J. R. Wharfe and W. L. F. van den
Broek, Baseline Concentrations of Polychlorinated Biphenyls and DDT in Lake
Michigan Fish, 1971, Copyright 1975--Pergamon Press, Ltd.

140



8 8u z ueyyl SSIT SIIBDTIPUT 3deI] i

1-

‘#GZI I0TD01y UO p3seq 3I3m SUOTIE[NO[eD g)d YL 44
*30@-dd pue -do jo ums 9yl ST Fgg-1 4
‘wsTue3io JUTATT 3yl Jo IYSTaM [sai1J Uo paseq ‘Teridjew oTuedio ITQeIdBIIXS JUIDISJ 4
*PIT ‘ssaad uowe3aad--0861 IYSTIAdo) ‘A9jIn] JO ISEO) UBIURIASIIPIN UIIISeq 9Y) WOIJ SIUIWIPIS pue ‘suead
-e1sna) ‘ysTg UT SanpIsay gpd PUeR ‘HAQ ‘Idd ‘seqTed "I L pue ‘nySoyrfes ‘I ‘ueSoq ‘W ‘yaniseg ‘g ‘gel d

‘1T ToA ‘ur3a[Ing uoIinjlod duTiel 3yl woiy uorsstwrad ytm psjutaday - (0861) "Te 39 JyIniseg woag s
S1 < [4 uesw
6€ L Y " Xew (39duwrt)
4 [4 I ‘uta €0 A/, vOrnIseD erreozed
€ e 8¢ uesuw
£L <9 19 *xXeuw (dutays)
I b € ‘uTwW %°0 o4 sninyzeasy snsuedeteq
-- V74 Ly uesuw
XL %6 69 *Xew (Ys13y 3e08 pURq PTOF)
€ 69 1€ ‘uTw €Yy ()] sTsusoerom snouadf
- H¢ 12 uesw
L oY G¢ *Xew (39T Tnw pax)
- 0¢ L ‘utw 9°C 9 snmoTnmIns snyrny
- o€t Z9 ueaw
[4 LST [4A! ‘Xew (3911nw padrigs)
€L 6 [4 ‘Ut 0°'9 9z snyeqreq snyrng
- 68 8y ueaw
01 Y¥Ze €LT *Xew (3911w £313 uapyol)
i1 8 S utm 81 0c snaegzne 1Ibny
+490d-2 10a-3 430a-1 ¥¥H0T % pazAteuy pazATeuy sar1dadg
STenpTATpUl 3O °ON

(1y3ToM ysaxg L 3 3u)

anprsay auixolyaouedip

wA9YIn] Jo 1SEO) UBRIURIISFIPIY

9y} WoXj S3381Q93I9AU] puUe YSIJ UI SUOTIBIJUSIUO) SUIIo[(oouelig

S 91qeL

141



Table 46
PCB Concentrations in Cod and Some Important Cod Prey Organisms

from Kiel Bay in 1977%

Mean PCB Concentrations
Weight Lipid ppb Wet
Species n g % Weight ppm Lipid
Diastylis rathkei 696 0.013 0.81 169 20.65
Pectinaria koreni (scallop) 50 0.038 1.08 130 12.00
Cyprina islandica (clam) 10 23.37 0.76 79 10.37
(soft body) »
Nephthys spp. (polychaete) 80 0.083 0.82 80 9.83
Crangon crangon (shrimp) 40 0.292 0.51 32 6.34
188 0.308 1.53 83 9.13
Pomatoschistus minutus 35 0.813 1.88 114 6.09
178 0.751 3.03 109 3.58
Sprattus sprattus (sprat) 13  ca. 20.0 11.60 230 1.99
Clupea harengus (herring) 12 ca. 20.0 6.30 242 3.84
Gadus morhua (cod)
liver 17 498.5 51.20 2874 5.74
fillet 18 482.0 0.73 23 3.17

So

* From Schneider (1982). Reprinted with permission from Meeresforschung,
Vol 29, p 72, Copyright 1982--Verlag Paul Parey.
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Table 47

DDT and PCB Concentrations (ppm) in Three California

Marine Food Webs¥*

Cs:K
Trophic Ratlg Total  Total  PCB in DDT in
Species Level x 10 PCB DDT Lipid Lipid
Coastal Pelagic Food Web
White shark 5.02 31.7 0.041 0.598 5.06 73.8
Mako shark 4.40 19.7 0.035 0.143 2.55 10.4
Sea lion 4.02 10.7 1.22 24.8 84.7 1722
Blue shark 4.00 13.7 0.016 0.107 1.86 12.4
Swordfish 3.97 12.3 0.020 0.105 0.76 2.63
Thresher shark 3.82 25.5 0.016 0.094 1.48 8.7
Bonita 3.80 8.79 0.029 0.184 2.79 17.7
Barracuda 3.74 4.20 0.115 0.800 2.17 11.2
Pacific mackerel 3.54 6.86 0.026 0.129 1.38 6.86
Market squid 3.62 3.32 0.012 0.014 <0.46 0.54
Pacific hake 3.09 8.58 0.012 0.036 1.56 4.68
Jack mackerel 3.04 5.73 0.014 0.119 1.12 9.52
Sardine 3.01 4.02 0.105 0.484 3.02 13.9
Basking shark 3.00 16.1 0.004 <0.005 - -
Blue whale 3.00 11.0 0.003 0.050 0.20 3.33
Anchovy 2.82 1.87 0.008 0.047 0.500 2.94
Zooplankton 2.0 3.2 <0.003 0.011 0.278 1.08
Palos Verdes Epibenthic Food Web
Scorpionfish 4.53 6.22 0.044 0.268 0.56 34.4
Spiny dogfish 4.16 31.3 5.12 65.5 41.9 537
Dover sole 3.52 3.62 0.279 7.17 16.1 414
White croaker 3.36 2.85 0.383 7.63 22.9 454
Ridgeback prawn 3.33 3.04 0.061 0.327 5.81 22.7
Mysids and decapods 2.78 13.8 0.032 0.323 2.22 22.4
Sediments -- 840 1.64 27.8 273 4633
Eastern Tropical Pacific Food Web (Open Ocean)
Yellowfin tuna (50 kg) 4.82 13.3 <0.002 0.011 <0.217 1.20
Silky shark 4.81 22.8 <0.001 0.007 <0.115 0.804
Skipjack tuna 4.44 8.59 0.003 <0.001 0.462 <0.154
Yellowfin tuna (4 kg) 4.29 12.7 <0.002 <0.002 <0.308 <0.308
Frigate tuna 3.92 8.89 <0.001 0.005 <0.172 0.862
Squid 3.52 1.94 <0.001 <0.001 <0.169 <0.077
Flying fish 3.00 7.00 <0.002 <0.001 <0.235 <0.118
Zooplankton 2.00 3.30 0.002 <0.001 0.016 <0.083

% After Schafer et al. (1982). Values are mean concentrations

parts per million wet weight.
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Table 48

Concentrations of PCB in Cottids, Mussels, and Sediment from

Southern Puget Sound*

Concentration Concentration Concentration
in Cottids in Mussels in Sediment
Site No. ppb Wet Wt. _ppb Wet Wt. ppb Dry Wt.
1 65 85 1.8
2 470 95 70
3 840 210 330
4 180 31 1.0
5 200 72 6.3
6 500 38 17
7 100 16 1.5
8 130 50 2.6
9 56 27 1.1
10 66 30 2.1
11 29 14 0.7
12 29 24 1.5
13 62 11 3.1
14 21 16 0.7
15 29 10 5.7
16 63 11 1.8
17 160 14 10
18 190 40 7.3

oo
W

After Mowrer et al. (1977). Reprinted with permission from the Bulletin
of Environmental Contamination and Toxicology, Vol 18, p 592, Copyright
1977--Springer-Verlag.
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oa-Endo-

sulfan
0.3
0.5
0.5
0.3

prp'-
DDE
1.0
0.8
1.2
0.8
1.0
1.0

2.2
1.6
1.1
2.1

1.4
1.6
1.5

a-HCH y-HCH
1.3

Residue Concentration, ng g
Dieldrin

pP,p'-
DDD
3.2
3.1
4.5

3.9

PCB
62
57
91
57

1.3
1.3
1.5
1.4

%

Table 49 (Concluded)
Lipid

Weight
22.2
21.1
20.8
22.3

Average
Wet

Weight
14.7
14.0
13.5
14.7

Average
Length
cm

of
Animals
20
20
20
20

No.

(Polychaeta)

Age Group
Marina (L),
11

Species and
Lugworm

Arenicola

w0 7
(=]

1.5
1.7

1.5
1.5
0.2

4.0
64 3.7
+16

51
(4500

1.5
1.4

30.1

20.6
21.4

13.7
4.

+0.2
(30
+8)
0.4
0.3
0.3
0.3
0.3
0.3
0.1
(20
+10)
1.4
1.7
0.9
0.9

0.2
(69
+10)
0.9
0.9
0.9
0.9
0.9
0.9
0.0
(70
+10
4.5
4.6
2.8
3.5
3.6
3.8

0.5
(120
+40)
2.7
1.6
1.4
1.4
1.9
1.8
0.6
(140
150
3.4
4.3
2.0
3.3
2.4
3.1

+

(100
+20)
2.8
2.4
2.0
2.2
2.3
2.3

+0.3

(180
+40
5.4
4.7
2.9
4.0

0.6
0.5
0.4
0.5
0.5
0.5
0.1
(40
%10
4.4
5.2
2.8
3.6
4.8
4.2

0.6
(270
130)
0.8
0.6
0.8
0.6
0.6
0.7
(50
+20
10.0
13.4
7.5
7.7
10.7

+1000)
59
64
56
62
58
60
(4600
+400
218
281
173
204

1.2
1.3
1.3
1.4
1.3
$0.1
2.8
2.7
2.2
2.8

3.0
2.7

0.8

20.8
23.9
23.8
23.8
24.3
23.3
24.5
24.5
23.7
24.5

+2.6
2.6
2.3
2.4
2.2
2.3
37.6
37.2
39.0
41.9

6.0

to

6.5
16.5
16.6
16.7
16.8

100
100
100
100
100

sd

(Crustacea)

crangon L.,
brown shrimp
I-11
Solea solea L.,
common sole
(Pisces)
I

Crangon

o T

1.4
1.
0.8

0.9

+

3.6
4.1
1.0

$1.0

9.9
2.5

36.7 24.7 155
24.4 206
0.4 $0.3 49

38.5
17.8

16.6
16.6
+1.0

0 Ipd

sd
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(150
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+1900




*SUOT]IeTIAIP pIepuels F SUE3W 3IB SINTBA

-8e1xap-a398utads--0861 IyStahkdoy ‘gyz d ¢y Top *ABoro0d1IX0] pue

UOTJeUTWE]UO) [EJUSWUOITAUY JO SIATIYDIY woiJ uorsstwrad yitm pajutxday - (0861) NTA3xg pue ¥xalg woag .

9%F¥ v9¥ [4 %>
9¢ L81 81 6 SeuseuWl SNUIDJIE) qe1)
133uaaedg
00" 1% € 0¥ SI'0F¥ 0¢¥ 99% 6F 6" 0¥ , snsery
10°¢ 6 <9°0 L9 STt €T S'¢ ST shyaysrIerd 19punoTty
sdoaoru
09°0 8'9 €%°0 8T LIT €l ¢ S SN3STYDSO0BUOG 1qo3 uowwo)
sI19peaJ sregey/podriyduy
z°€ €0 86 L [ VA sTIebrna uobuel) dwtayg
8°¢€ €v°0 00T 01 9°C Z -dds srteasy wiom I13ISTIg
S19paaJ sSNITIII(
T VA €9°0 4 6S S 8°0 [4 STINp® snrr2hi sTassuy
b1t 21 Z snstaoxdumr snuereg sa[oeuieg
SI9paaF IIITIH
€00°0 8€0°0 ¢00°0 < T 1 € x93em 99¢ S]usWIpIs woljog
R g3d 30a g0H €904 3aQ % pazATeuy s1Tqeq 3uTpaag o3 FuTpIoddYy sITdadS
14y319M e wdd 1y3Ttap 19M qdd ‘aeg *ON

wAemIoN

‘exg woijy sajdweg [edI30[0Ig pPUEB SIUSWIPIS UT GOH Pue °sgdd °‘dAad

0S °T19eElL

147



pass

9xdxe ‘sSuoTleTIASp pIepPUER]IS F SUEBIW 3Ie sanJep -puejod

*qy31om 39m uotrlTw I3d sqaed se
T°H 3Te3ISUY 9YdsT30701g--0861 IY3tahdoy ‘/¢gg d

‘€€ ToA ‘uUsayonsivjunsaAIBY Ipupo3[9H woiay uorsstuaad yitm pajuradsy - (0861) uoisSue] pue Lsulino) woag

%0°0 ¥ 80°0 ¢0°0 ¥ €0°0 10°0 ¥ 20°0 €0°0 F ¥0°0 9€°0 ¥ 0S°0 8€°C F €6'Y ny
80°0 ¥ L0°0 €0°0 ¥ €0°0 20°0 ¥ 20°0 %0°0 ¥ €070 86°0 ¥ LS°0 99°TT ¥ 1601 peuoy
90°0 ¥ 1170 €0°0 ¥ ¥0°0 €0°0 ¥ ¥0°0 Z0°0 ¥ €0°0 S0 ¥ 09°0 v°9 ¥ v6°Y 2Tosny
80°0 ¥ 0Z°0 %0°0 ¥ 9070 %0°0 F L0°0 S0°0 ¥ L0°0 SG°0 F SO0°1 68'% ¥ w¥°0I STTTO
0S°0 ¥ £LL°0 81°0 ¥ 6170 €C°0 F 0£°0 02°0 ¥ 0£°0 6E°7 ¥ 1L°G €2l ¥ 0°%¢ x3AT]
(o1 = u)
(xspuno13y) snsery sAyzyosrzerd
£000°0 ¥ €€00°0 CO00°0 ¥ 8000°0 CO00°0 ¥ IT00°0 9000°0 F¥ ¥I00°0 €0°0 ¥ 90°0 ¢L0 ¥ LS°T
(0z = u)
(°14202) ernpe euIspolsets)
1aa Iaa aaa 40a god e % suediQ

#S91320) pue 1spunolj jo (wdd) 3u
1S 31qeL

93u0) aurIoTyooue3di(Q

148



Table 52

Concentrations of PCBs Detected in the Brisbane River Ecosystem®

Sample Identification and
Number Analyzed

Water (8), ppb
Sediments (8)

Crabs
(Sesarma erythrodactyla) (7)

Mud Crab
(Helograpsus haswellianus) (1)

Polychaetes
(Unidentified) (5)

Mussels
(Mytilus corscus) (2)

Periwinkles
(Austrocochlea obtusa) (1)

Oyster Blennies

(Petroscirtes anolius) (3)
Whiting

(sillago ciliata) (2)

Striped Butterfish

(Selenotoca multifasciata) (1)

Bony Bream
(Nematolosa come) (2)

Flathead
(Platycephalus fuscus) (1)

Mullet
(Mugil cephalus) (15)

Pelican
(Pelecanus conspicillatus) (6)

Sample

PCB, ppm

Mixture Mixture
Containing Containing
__s4%cl __60%Cl
ND-0.009% ND-0.05
ND-0.054 ND-0.058
ND-0.05 0.034-0.26
ND-2.0 ND-23
ND 0.09
ND 38
ND-0.23 ND-0.29
ND-1.9 ND-13
ND-0.052 ND-0.25
ND-3.8 ND-45
0.03 0.015
8 4
0.10-0.13 ND-1.4
2.2-7.2 ND-60
0.07-0.71 0.22-0.70
6.9-30 20-30
0.026 0.041
2.6 4.1
0.022-0.040 0.14-0.33
2.5-5.5 20-34
0.014 0.033
17 41
ND-0.94 ND-2.9
ND-23 ND-230
ND-1.7 2.1-15.7
ND-36 45-350

% From Shaw and Connell (1980).

Pergamon Press, Ltd.

#** w = whole organism analyzed:
weight basis concentration; m

T ND = not detected.

Reprinted with permission from Marine
Pollution Bulletin, Vol 11, G. R. Shaw and D. W. Connell, Polychlorinated
Biphenyls in the Brisbane River Estuary, Australia, Copyright 1980--

1b = 1lipid basis concentration; wwb = wet

= muscle tissue; g = gill tissue.
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Table 53

Concentration Factors (in Comparison to Water) for

DDT Bioaccumulation®

Location

Farm pond
Farm pond
Pools

Mean

Standard Deviation

Year of Study
1965
1966
1967

0.05 ppm
1.0 ppm
10.0 ppm

Component

Algae Invertebrates Fish
20,000 28,750 363,000
5789 27,868 317,000
7700 20,000 78,500
1843 11,687 76,006
770 5,941 23,125
7220 18,849 171,526
7683 9,982 156,225

ot
w

From Hamelink, Waybrant, and Ball (1971).

Reprinted with permission from

the Transactions of the American Fisheries Society, Vol 100, p 212, Copy-

right 1971--American Fisheries Society.
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Chlorinated Hydrocarbo

P I A
auic U<

n Pesticides in the Biota at

Tule Lake Wildlife Refuge®

Component Date Collected DDE DDD/DDT** Chlordane Endrin
Suspended material 4/20/66 -- 0.75 3.0 1.5
6/22/66 - - 67.0 6.0

7/22/66 1.7 10.0 6.0 1.3

8/22/66 6.6 4.0 6.0 57.7

5/13/66 - 4.0 8.0 13.0

10/26/66 1.0 0.7/2.0 1.5 5.3

11/16/66 -~ -~ 8.5 --

1/06/67 1.5 3.3/12.0 14.7 1.5

Vascular plants 6/22/66 1.0 1.0 5.0 --
7/22/66 == == 2.0 1.6

8/22/66 1.0 2.0 2.0 12.2

9/13/66 - -- 1.5 12.5

9/29/66 0.8 1.2 -- 4.8

10/20/66 1.0 10.0 6.0 8.0

11/16/66 0.6 0.7 2.6 1.8

Algae 4/20/66 0.5 0.75 0 2.0
6/22/66 2.0 3.0 50.0 --

7/22/66 -- -- -- --

8/22/66 0.8 0.4 1.7 22.3

9/13/66 1.3 1.3 13.5 10.8

Clams 8/10/65 4.0 4.0 3.0 34.0
12/28/65 4.0 3.0 4.5 4.0

7/22/66 4.8 4.8 12.0 2.0

Chubs 8/27/65 45.0 17.0 -~ 198.0
4/20/66 26.0 12.0 24.0 10.0

6/22/66 14.0 10.0 10.0 6.0

7/22/66 6.2 9.6 8.0 4.0

8/22/66 2.5 2.5 -- 30.5

* From Godsil and Johnson (1968).

Values are reported as parts per billion

wet weight. The indication -- means levels were below analytical

wloats
W
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Table 55
Residues of DDT (ppm) in Whole Fish of Cayuga Lake at Taughannock,
New York, in October 1963+

Species Total DDT
Sunfish 0.2
Rock bass 0.3
White sucker 0.5
Alewife 0.7
Smallmouth bass 0.7
Yellow perch 1.1
Lamprey 5.3
Lake trout (immature) 3.6
Lake trout (mature) 6.2

% After Mack et al. (1964). Values are means expressed as parts per
million wet weight.
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Table 57

Average Percent Fat Content and Mean Whole-Body Insecticide Levels in Fish

Collected in July and October 1978 in the Des Moines River, Iowa®

No. Fat
Fish Species Fish %

Gizzard shad 104 17.0
River carpsucker 72 5.4
Carp 91 4.5
Channel catfish 3 8.5
White crappie 79 2.7
Walleye 26 2.0
Largemouth bass 52 4.0

Concentration, ppm

Heptachlor
Dieldrin DDT Epoxide
81 (0.48) 55 (0.32) 14 (0.08)
45 (0.83) 39 (0.72) 3 (0.06)
35 (0.78) 45 (1.00) 6 (0.13)
101 (1.19) 101 (1.19) 10 (0.12)
56 (2.07) 46 (1.70) 8 (0.30)
26 (1.30) 106 (5.30) 2 (0.10)
61 (1.52) 75 (1.87) 8 (0.20)

% From Bulkley, Leung, and Richard (1981).
of parts per million wet weight and (in parentheses) parts per million in

fat.
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Table 58
DDE Residues (ppm) in Three Kenya Lake Drainage Systems®

Drainage System

Organism Naivasha Nakaru Baringo
Vegetation
Algae 0.007 = 0.020 Trace ND-Trace
Higher aquatics 0.030 £ 0.067 -- ND-Trace
Ferns 0.107 * 0.035 -- --
Insects 0.034 £ 0.076 Trace 0.090 + 0.127
Crustacea -- 0.04 = 0.20 --
Other invertebrates Trace -- --
Fish
Tilapia 0.007 * 0.011 0.074 * 0.051 0.043 % 0.015
Black bass 0.016 * 0.019
Clarias mosambicus -- - 0.095 * 0.033
Barbus gregorii -- - 0.143 * 0.080
Labeo cylindricus -- -- 2.13

ats

* After Lincer et al. (1981). Values are expressed as parts per million dry
weight.
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Table 61
DDT Residues (DDT + DDE + DDD) in Samples from Carmans River Estuary

and Vicinity, Long Island, N. Y.%*

DDT Percent
Residues of Residues
Sample _ppm DDT DDE DDD

Water 0.0005

Plankton (mostly zooplankton) 0.040 25 75 Trace
Cladophora gracilis 0.083 56 28 16
Shrimp 0.16 16 58 26
Opsanus tau, oyster toadfish (immature) 0.17 None 100 Trace
Menidia menidia, Atlantic silverside 0.23 17 48 35
Nassarius obsoletus, mud snail 0.26 18 39 43
Gasterosteus aculeatus, threespine stickleback 0.26 24 51 25
Anguilla rostrata American eel (immature) 0.28 29 43 28
Flying insects, mostly Diptera 0.30 16 44 40
Spartina patens, shoots 0.33 58 26 16
Mercenaria mercenaria, hard clam 0.42 71 17 12
Cyprinodon variegatus, sheepshead minnow 0.94 12 20 68
Fundulus heteroclitus, mummichog 1.24 58 18 24
Paralichthys dentatus, summer flounder 1.28 28 44 28
Esox niger, chain pickerel 1.33 34 26 40
Strongylura marina, Atlantic needlefish 2.07 21 28 51
Spartina patens, roots 2.80 31 57 12

* From Woodwell, Wurster, and Isaacson (1967). Reprinted by permission from
Science, Vol 156, p 822, Copyright 1967 by the AAAS. Values for DDT ex-
pressed as parts per million wet weight of whole organisms.
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Table 63

Transfer of Dieldrin From Clams to Crabs¥®

Dieldrin Dieldrin in

No. Days in Clam Crab, ppm
Test Treatment of Feeding ppb X £ sd Range
1 Control 10 1 7.5+ 1.9 (5.9 - 8.4)
Experimental 10 193 25.3 £ 4.6 (19.2 - 31.9)
2%% Control 10 1 4.7 £ 1.5 (2.8 - 6.9)
Experimental 10 181 96.6 * 78.1 (18.4 - 203.9)
3 Control 5 1 3.4 1.3 (2.4 - 5.9)
Experimental 5 193 32.8 + 5.5 (29.3 - 41.5)

* After Petrocelli, Anderson, and Hanks (1975).

*% The weights of the crabs in this test were about one fourth of those in

the other two tests.
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Table 64

Organochlorine Insecticide Residues in Fat from Fishes in

the Transvaal, South Africa*

Residues (mg/kg Fat)

Total p,p'- p,p'- Total
Species Number Locality#* BHC DDE DDT Dieldrin Endosulfan Total
Barbel 3 A 0.38 28.80 1.52 1.33 1.24 33.27
1 B 0.28 7.50 0.83 0.38 1.70 10.68
1 C 0.55 7.71 NDt 0.90 0.33 9.49
X 0.40 14.67 0.78 0.87 1.09 17.82
Kurper 1 A 0.37 18.63 5.65 1.44 ND 26.09
1 B 0.17 5.34 0.11 0.41 0.50 6.53
1 C 0.16 4.85 0.68 0.50 ND 6.19
X 0.23 9.61 2.15 0.78 0.17 12.94
Yellowfish 1 A 0.26 9.18 ND ND 5.88 15.32
Mudfish 1 D 0.19 3.79 0.43 0.51 ND 4.92

* After Pick, de Beer, and van Dyk (1981).
Chemosphere, Vol 10, Pick, F. E., P. R. de Beer, and L. P. van Dyk, Organo-
chlorine Insecticide Residues in Birds and Fish from the Transvaal, South
Africa, Copyright 1981--Pergamon Press, Ltd.

#*% A = Olifants River near Marble Hall; B = Olifants River Dam near Phala-
borwa; C = Letaba River in Hans Merensky Nature Reserve; D = Crocodile River

near Kaap Muiden.
T ND = not detectable.
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Table 65

Kepone Transfer in a Plankton-Mysid-Fish Food Chain*

Control Low Exposure High Exposure
Varibles Food Chain Food Chain Food Chain
1. Kepone (single dose) in brine Control 0.005 0.1
shrimp media (mg/1)
2. Kepone residues in brine shrimp Control 0.049 1.3
after 48 hrs of exposure (mg/kg) (ND)** 0.043 2.4
_ 0.058 _ 3.3
X = 0.050 X= 2.33
3. Bioconcentration factor from water -~ 10 23.3
[(2)/(1D)]
4. Kepone residues in mysids after Control X = 0.023 0.89
72 hours of feeding (mg/kg) (ND)** (estimated) 1.0
1.8
X= 1.23
5. Bioaccumulation factor from brine -- 0.5 0.53
shrimp to mysids [(4)/(2)] (estimated)
6. Kepone residues in spot after Control 0.015 1.0
30 days of feeding (mg/kg) (ND)** _ 0.024 _ 1.1
X = 0.0195 X= 1.05
7. Bioaccumulation factor from mysids -- >0.85 >0.85
to spot [(6)/(4)] (estimated)
8. Food chain factor [(6)/(1)] -~ >3.9 >10.5

*

aaats
Xy

From Bahner et al. (1977). Reprinted with permission from Chesapeake
Science, Vol 18, p 307, Copyright 1977--Estuarine Research Foundation.
Brine shrimp (A. salina) were hatched during 48 hr in kepone-enriched sea-

water and were fed to mysids (M. bahia) for 72 hr.

Mysids were then fed to

spot (L. xanthurus) for 30 days in flow-through feeding experiment.

ND = non-detectable (<0.02 mg/kg).
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Bioaccumulation of Di-2-Ethylhexyl Phthalate (DEHP),

22,

4-trichlorobenzene (TCB), and Leptophos by Bluegill

{(Lepomis macrochirus) During Continuous Aqueous and

Dietary + Aqueous Exposure®

Residue Bodv Burden, mg/kg#*
Day DEHP TCB Leptophos
Aqueous Onlyt

1 0.32(0.02) 0.29(0.13) 0.007(0.002)
3 0.55(0.11) 0.45(0.32) 0.045(0.011)
7 0.72(0.09) 0.82(0.41) 0.083(0.012)
0.52(0.09) 0.22(0.50) 0.149(0.052)
0.55(0.08) 0.79(0.42) 0.182(0.021)
0.83(0.16) 0.32(0.16) 0.150(0.053)
0.62(0.14) 0.57(0.10) 0.195(0.078)
0.66(0.13) -7t 0.195(0.050)

x1 0.64(0.11) 0.53(0.25) 0.179(0.03)

Dietary + Aqueousif
0.31(0.02) 0.23(0.11) 0.012(0.007)
0.57(0.09) 0.50(0.33) 0.037(0.007)
0.75(0.06) 0.33(0.20) 0.076(0.016)
0.64(0.10) 0.86(0.54) 0.141(0.031)
0.70(0.16) 0.78(0.38) 0.200(0.032)
0.90(0.35) 0.39(0.13) 0.175(0.017)
0.78(0.17) 0.55(0.09) 0.164(0.036)
0.78(0.27) -- --

0.73(0.11) 0.57(0.21) 0.170(0.030)

After Macek, Petrocelli, and Sleight (1979). Reprinted with permission

from the American Society for Testing and Materials, 1916 Race Street,

Philadelphia, PA 19103. Values are means with standard deviations shown

in parentheses

Body burden is based on the analysis of the whole fish for di-2-ethylhexyl

phthalate and trichlorobenzene and on the analysis of the eviscerated

carcass for leptophos.

Aqueous exposure alone to 5.7 ppb DEHP, 2.9 ppb TCB, and 0.24 ppb
leptophos.

f The exposure was terminated after 28 days of exposure.

Mean equilibrium body burden.

Dietary + aqueous exposure: DEHP at 5.6 ppb aqueous + 2.8 ppm in diet;
TCB at 2.9 ppb aqueous t+ 0.44 ppm in diet; leptophos at 0.22 ppb aqueous +
N NA’ w»nrym + diot
eV IO PPIII Ll \JL‘—UQ
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Table 68

Concentrations of Dimethylnaphthalene (DMN) in Artemia sp. and

P. pugio from the Six Exposure and Recovery Periods*

Temperature Regime

Stable Temperature

Fluctuating Temperature

Stable Temperature

Fluctuating Temperature

Palaemonetes
pugio**

Exposure

5.26 * 1.37
n = 20

7.20 £ £1.00
n = 20

Recovery

1.27 + 0.35
n = 27

2.60 + 0.48

Artemia sp.t

o

.00F%

0.00%f

* From Dillon (1982).

Reprinted with permission from the Bulletin of

Environmental Contamination and Toxicology, Vol 28, p 152, Copyright 1982--

Springer-Verlag. Values are means * standard errors expressed as micro-

grams DMN per gram wet weight.
*% Each sample analyzed contained two shrimp.

o

T Each sample analyzed contained one food cube.

tt¥ Uncontaminated food source.
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Table 69

Selected PAHs and Total PAHs in Flesh of Various Fish and Shellfish

from the Hudson River and New York Bight Region®*

Species
(location)

Naphthalene

Phenanthrene

Anthracene

Biphenyl

Total
PAH

Atlantic mackerel
(Scomber scombrus)
(N.Y. Bight Apex)

Winter flounder

(Pseudopleuronectes
americanus)

(Christiaensen Basin)

Winter flounder
(P. americanus)
(Raritan Bay)

Striped bass
(Morone saxatilis)
(Montauk Point)

Striped bass
(M. saxatilis)
(Hudson River)

Lobster
(Homarus americanus)
(New York Bight)

Lobster
(H. americanus)
(Raritan Bay)

Lobster
(H. americanus)
(Raritan Bay)

Blue mussel
(Mytilus edulis)
(Sandy Hook)

Blue mussel
(M. edulis)
{Shark River)

ND#*

20

10

10

ND

ND

40

10

19

25

77

250

120

* From O'Connor, Klotz, and Kneip (1982).
billion wet weight.
#% ND indicates compound not detected.

wtaat
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