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WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS 

P. 0. BOX 631 
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25 November 1977 

SUBJECT: Transmittal of Technical Report D-77-32 

TO: All Report Recipients 

1. The report transmitted herewith represents the results of a research 
effort (work unit) initiated as part of Task 5C (Disposal Area Reuse 
Research) of the Corps of Engineers' Dredged Material Research Program 
(DMRP). Task 5C is included under the Disposal Operations Project, 
which is concerned with both the environmental effects of disposal 
operations and facilities as well as new concepts for disposal, partic- 
ularly those concepts involving consideration of dredged material as a 
resource rather than simply a waste product. 

2. A particularly attractive concept for mitigating the land require- 
ments for disposal sites is to increase the life expectancy of sites 
through the periodic removal of dredged material for use elsewhere. 
Optimally, sites could be used indefinitely and be truly permanent 
disposal facilities. However, continuing needs for the dredged material 
must be identified; procedures must be identified for processing and/or 
rehandling materials; and mechanisms must be established for marketing 
materials under known constraints. 

3. The investigation reported herein addresses identification of power 
sources for processing systems at reusable disposal sites. Processing 
systems at disposal sites may be designed to extract sand and gravel for 
commercial use, remove silt and clay from water to meet effluent-quality 
restrictions, and dewater residual silt and clay to reduce volume and/or 
provide a more desirable material. Conventional power may not be avail- 
able or may be extremely expensive due to the remoteness and inaccessi- 
bility of many of the disposal sites; consequently, alternative power 
sources were investigated for the DMRP by the Civil Engineering Labora- 
tory, Naval Construction Battalion Center, Port Hueneme, California. 

4. The scope of the assigned task was to provide a screening and 
selection procedure for designing power sources for dredged material 
processing systems. No original research was conducted as part of this 
study, and conclusions were drawn based on existing information. The 
exact power requirements for reusable disposal sites are unknown because 
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this study was made concurrently with studies to provide guidance on the 
design of such facilities. However, the range of magnitude of power 
available from alternative sources was determined and could be fitted to 
the power requirements later. 

5. Wind, solar, and hydraulic power sources were considered in the 
study. Results indicated that even though flat-plate solar collectors 
are now commercially available to heat air or water for buildings, they 
are not well adapted to known dredged material processing systems re- 
quirements. Solar cell electrical power generation, though available, 
is not cost competitive in its application at present. Likewise, 
hydraulic power generation by waves, currents, or small hydroelectric 
plants does not appear to be practical at typical dredging sites. Of 
all the alternative power sources studied, wind electric generation 
seemed to be the most practical and versatile. 

6. Though the unit cost of wind-produced electricity is competitive, 
the present generator size limit of 12 kw might require a large number 
of wind-powered generators at a dredging site. For example, if windmills 
were used to power dewatering devices such as vacuum pumping or electro- 
osmosis systems, approximately one 12-kw wind-powered generator would be 
needed for each acre. However, larger lOO-kw wind-powered generators 
are now under operational tests. A typical loo-acre disposal site could 
be dewatered by devices operated by twelve lOO-kw generators. 

7. The results of this study will be included as part of a synthesis 
report on the concept of reusable disposal sites. Of course, the 
results are also applicable to any situation where power may 'be required 
at a disposal site. 

Colonel, Corps of Engineers 
Comander and Director 
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EXECUTIVE SUMMARY 

This report provides a basis for selecting alternative, renewable 

power sources specifically for operating dredged material processing sys- 

tems. 

A dredged material processing system is designed to: (1) extract 

sand and gravel for commercial use, (2) remove silt and clay from water 

to meet quality restrictions on return water, and (3) dewater the resid- 

ual silt and clay to reduce volume and/or provide a usable foundation for 

later land use. Currently, processing of dredged material usually con- 

sists of holding the hydraulically pumped slurry in a diked containment 

area and draining off the water after settlement of the suspended mate- 

rial. Subsequent natural drying by evaporation may not significantly re- 

duce the water content of silts and clays for long periods of time (years). 

The scope of the assigned task was to provide a screening and se- 

lection procedure for the engineer designing a dredged material proces- 

sing system in order to decide which natural form of energy (or combina- 

tion), if any, should be chosen to power the system. Power requirements 

of the mechanical gravel and sand separators would be established when 

specific equipment is selected for a particular system. Mobile equipment 

for dredged material processing might be powered from the alternative 

sources; for example, electric motors could operate on batteries charged 

by the alternative sources. 

The exact power requirements to dewater the fine-grained fractions 

are unknown because dewatering equipment is presently under development, 

but alternative power can be provided in several forms. The following 

were considered in this study: 

1. Wind power for driving pumps and electric generators 

2. Solar radiation for conversion to thermal and electrical 
energy 

3. Hydraulic power (waves and currents) for driving electric 
generators. 

Some consideration was given to obtaining power from solid waste (such 

as incineration of trash), but the idea was discarded as not pertinent 

to the scope of this report. In this report, wind power is presented as 
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electricity or as shaft horsepower, solar power as heated water or air 

flow or as electricity, and hydraulic power, possibly, as electricity. 

Even though flatplate solar collectors are now commercially avail- 

able to heat air or water for buildings, they are not well adapted to 

known or proposed dredged material processing systems. The cost of solar 

cell electrical power generation, though available, is prohibitively high 

at present. Likewise, hydraulic power generation by waves, currents, or 

small hydro-electric plants does not appear to be practical at typical 

dredging sites. 

Of all the alternative power sources studied, wind electric genera- 

tion seems to be the most practical and versatile to apply at this time. 

A 12-kw DC wind generator is shown to provide power at Buffalo, New York 

(best site), for $O.O243/kw-hr, a price actually less than the typical 

purchased electricity cost of $O.O263/kw-hr. Electrical power could be 

used by the vacuum pumping and electro-osmotic dewatering systems pre- 

sently under development elsewhere. However, though the unit cost of 

wind-produced electricity is competitive, the present size limit of 12 kw 

might imply a large number of wind generators at dredging sites. Such a 

situation may be deemed impractical at this time. 

With an estimate of 0.15 kw-hr to be required to remove 1 gal of 

water from dredged material by electro-osmosis, the 12-kw wind generator 

could provide energy to dewater over 2500 cu yd of dredged material in a 

year at favorable locations. The energy cost for this processing would 

be $O.l8/cu yd. Vacuum well-point pumping is also being tested by other 

Dredged Material Research Program investigators using wind-generator 

power. While approximately one 12-kw wind generator would be needed for 

each acre, several facts should be considered: (1) purchased electricity 

costs are rising rapidly, (2) bringing electrical powerlines to remote 

sites is costly, (3) larger lOO-kw wind generators are now under opera- 

tional test, (4) removal of water from fine-grained dredged material by 

any method requires considerable energy, and (5) wind generators can be 

transported between sites. A loo-acre disposal site might be powered by 

twelve lOO-kw wind generators under the above assumptions, thus dewater- 

ing 250,000 cu yd/yr. Spacing the generators at two propeller diameters 
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apart on a line facing the prevailing wind implies an array about one- 

half mile long. 



PREFACE 

This report documents work performed by the Civil Engineering 

Laboratory (CEL), Naval Construction Battalion Center, Port Hueneme, 

California, as part of the Corps of Engineers Dredged Material Research 

Program (DMRP). The DMRP is sponsored by the Office, Chief of Engineers 

(DAEN-CWO-M), and is administered by the Environmental Effects Labora- 

tory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), 

Vicksburg, Mississippi. 

The study was conducted under Task 5C of the DMRP, "Disposal Area 

Reuse," Work Unit No. 5CO8, "Identification of Alternative Power Sources 

for Dredged Material Disposal Operations," and was performed during the 

period from June 1975 through June 1976. The report is the result of 

research to identify, describe, and evaluate presently available or 

potential systems for converting available resources located in the 

vicinity of dredging and disposal sites to usable energy for operation 

of equipment. Both technical and economic feasibility of different 

power generation systems is considered. 

The principal investigator at CEL was C. E. Parker of the Energy 

Program Office, and the associate investigator was J. B. Ciani. Coauthors 

of this report were D. Pal and K. F. Vodraska. Others who contributed 

to this work were F. W. Herrmann, R. E. Kirts, and H. S. Zwibel. The 

figures were drawn by R. S. Eldridge and D. J. Erwin. The report was 

edited by V. N. Spafford. 

The study was managed by Alfred W. Ford, EEL, for Charles C. Cal- 

houn, Jr., Manager of the Disposal Operations Project, DMRP. The 

study was under the general supervision of Dr. John Harrison, Chief, EEL. 

The directors of WES during the period of investigation and prepa- 

ration of the report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. 

The Technical Director was Mr. F. R. Brown. 
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT 

U.S. customary units of measurement used in 

to metric (SI) units as follows: 

this report can be converted 

Multiply BY To Obtain 

inches 

feet 

yards 

miles (US Statute) 

square inches 

square feet 

acres (US Survey) 

cubic feet 

cubic yards 

gallons (US liquid) 

pounds (mass) 

tons (short) 

horsepower 

pounds (mass) per cubic 
foot 

British thermal units 
(international) 

langleys 

pounds (force) per 
square inch 

knots (international) 

miles per hour 

2.54 

0.3048 

0.9144 

1.609344 

6.4516 

0.09290304 

4046.856 

0.02831685 

0.7645549 

3.785412 

0.4535924 

907.1847 

745.69999 

16.01846 

centimetres 

metres 

metres 

kilometres 

square centimetres 

square metres 

square metres 

cubic metres 

cubic metres 

cubic decimetres 

kilograms 

kilograms 

kilograms per cubic 
metre 

kilograms per cubic 
metre 

1055.056 joules 

41840.0 joules per square metre 

6894.757 pascals 

0.5144444 metres per second 

1.609344 kilometres per hour 
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Multiply 

feet per second squared 

cubic feet per minute 

Fahrenheit degrees 

BTU per pound (mass) 

BTU per pound (mass) x 
Fahrenheit degrees 

BTU per hour x feet 
square x Fahrenheit 
degrees 

degrees (angle) 

BY - 

0.3048 

0.0004719474 

519 

2326.0 

4186.8 

5.678263 

0.01745329 

To Obtain 

metres per second squared 

cubic metres per second 

Celsius degrees or 
Kelvins* 

joules/kilogram 

joules/kilogram - 
Kelvin 

wattslmetre squared - 
Kelvin 

radians 

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, 
use the following formula: C=(5/9)(F-32). To obtain Kelvin readings, 
use: K=(5/9)(F-32)+273.15. 
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IDENTIFICATION OF ALTERNATIVE POWER SOURCES FOR DREDGED 

MATERIAL PROCESSING OPERATIONS 

PART I: INTRODUCTION 

Background 

1. Dredging of sediments from the bottom of waterways is neces- 

sary to permit ship traffic. The dredged material removed is usually 

disposed by either placement in water outside the waterway or on land. 

Land disposal often involves a diked containment area where, to permit 

reuse of the area or the material itself, certain "passive" processing 

of dredged material traditionally takes place. Dredged material is 

usually hydraulically pumped to the containment area. The resulting 

slurry has a very high water content, which presents a difficult problem 

in draining and drying this material (particularly if the material is 

fine-grained clay, silt, and organic matter). Therefore, the main ef- 

fort in future dredged material processing is anticipated to be drying, 

or dewatering, to reduce volume and stabilize the soil. 

2. Historically, when there were few restraints on acquiring mar- 

ginal land for disposal areas, the dredged material was left to dry 

rather passively by natural action of sun and wind. Minimal ditching, 

sluicing, pumping, and other simple assistance to nature were provided. 

With no great press of time or space, this passive processing continued 

over several years, typically between dredge fills or "lifts." 

3. Now, restrictions imposed by environmental legislation on 

water disposal and on use of wetlands for disposal sites have caused a 

trend toward more disposal on land; but, at the same time, population 

pressures have increased land costs. This conflict has generated re- 

search to accelerate the tempo of dredged material processing - indeed, 

to change it to an active operation. Such active processing requires 

power. However, costs of energy have been increasing in recent years 

at very high rates, whereas alternative power system costs are relatively 

13 



constant. It is projected that electricity rates will escalate 6% to 

7% annually above general inflation; alternative power system costs are 

projected to increase at general inflation rates. 

4. The costs of petroleum products to the military have doubled 

in the past 2 years; for long-range planning, future increases up to 8% 

annually above general inflation rates are used. Electricity rates, 

being fuel dependent, are following similar trends. Thus, the energy 

costs of dredged material processing present a sizeable problem from the 

standpoint of fuel cost alone. Therefore, this task was formulated to 

provide essentially fuel-free power to the processing equipment. 

Purpose 

5. The objective of the study was to identify and formulate de- 

tailed descriptions of presently available or potential systems showing 

near-future feasibility for converting resources of energy located in 

the vicinity of dredging disposal sites to usable energy for operation 

of equipment used in dredged material processing operations. The ap- 

proach taken was to acquire and organize the information necessary to do 

site-specific analysis of local source energy systems. 

Scope 

6. The scope of this study is limited to commercially available 

alternative power systems or those sufficiently advanced in development 

to be available in the near future. New untried concepts are not in- 

cluded. 
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PART II: APPROACH 

General 

7. The essential approach taken in this work was to acquire and 

organize information necessary to do site-specific analysis of local 

source energy systems. The methodologies expected to be analytically 

employed and a description of the portrayal of results are presented 

in this report. 

8. Three tasks delineated in the Statement of Work for this study 

are summarized as follows: 

a. - Identification and investigation of alternative energy 
source research and development and specification of 
work that may be adaptable and beneficial to the ob- 
jectives of dredged material processing operations. 

b. Identification and description of potential sources of - 
energy available at dredging and dredged material pro- 
cessing sites, including characterization and quantifi- 
cation of the energy resource and quantified descrip- 
tions of physical systems used to convert local energy 
sources. This task was to include investigation of 
potential wind, solar, and hydraulic power. Consider- 
ation was also given to the feasibility of other energy 
sources. 

C. Evaluation of the potential energy sources and systems 
by means of illustrative portrayal, data appearing in 
tabular or graphical form, and technical dissertation 
including quantitative and qualitative information. The 
means for detailed site-specific design and evaluation 
through the use of parametrically presented design, per- 
formance, and cost data are provided. Plans and pro- 
cedures for the adaptation and utilization of energy at 
dredged material processing operations are recommended. 

Study Functions 

9. The following s 
these tasks: 

tudy functions were required 
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a. Compilation of an information base, including (1) alterna- - 
tive energy research and development reports and results; 
(2) local source energy data such as winds, insolation, 
water currents, waste heat, and thermal gradients; (3) energy 
demands in dredged material processing operations and physical 
data describing the equipment; (4) physical data describing 
potential energy systems; and (5) methodologies used to 
analyze energy sources and systems. 

b. Construction of parametric design sizing plots for each - 
system. 

C. Construction of parametric energy performance plots for - 
each system. 

d. Construction of parametric cost information plots for each - 
system. 

e. Preparation of technical dissertation on each system - 
recommending possible plans and procedures for adaptation 
and utilization. 

f. Combining of all study information into a final report. - 

Methodologies 

10. Methodologies were applied in the following areas: 

a. Local source energy analysis; i.e., quantities of energy - 
contained at each local source. 

b. Energy system sizing. - 
C. Energy system performance. - 
d. Cost benefit analysis. 

Data Sources 

11. Wind and solar energy available in each geographical region 

was obtained from historical climatological data. 

12. Wind-power duration curves were computed using velocity 

distribution data, and system energy output was computed from the enve- 

lope of windmill operation defined within the wind-power duration curve. 

Spatial correlations of wind energy data were computed by using a method 

previously derived by the principal investigator. Monthly variations in 

wind energy were computed from historical data. 
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13. Solar energy was computed using daily values of insolation 

for each month taken from weather station records. 

14. Quantities of energy available in local water currents, waste 

heat, and thermal gradients were computed from available data. Energy 

available in water currents is simply the quantity of kinetic energy 

contained in a given cross section of flow. Only a certain fraction 

(0.30 to 0.44), depending on the efficiency of the turbine, can be con- 

verted to useful mechanical work. Energy from waste heat or thermal 

gradients was computed using a Rankine thermodynamic cycle operation 

between the head source temperature and the surroundings. 

Computations 

15. Mean values and variations about the mean were computed from 

local source data. When appropriate, probabilities of occurrence of 

phenomena related to energy system design, such as amounts of storage, 

were computed from time-dependent energy data. 

16. Sizing depends on the time-dependent energy requirement, 

time-dependent quantities of available local energy, and efficiencies of 

energy conversion characteristic of each device. The available local 

source energy varies from site to site, and there was variation in 

conversion efficiencies, depending on the approach. Consequently, a 

parametric method of sizing was necessary. 

17. A series of parametric curves were constructed showing the 

variation of system size with parameters such as energy source intensity, 

component efficiencies, demand cycle, and local source time-dependent 

fluctuations. Conventional sizing parameters were used, such as rated 

power output, collector area, pumping capacity, or storage capacity. 

Data necessary to size a detailed design appear on these parametric 

plots. System component efficiencies were taken from the survey of 

energy research. 

18. Energy system performance is presented as a function of local 

energy source intensity and the time-integrated amount of local energy. 

For instance, windmill performance is given on two plots. One shows the 



windmill system's overall power coefficient as a function of windspeed; 

the other shows the operational envelope of the windmill on a site- 

specific annual power duration plot. Area within the operational enve- 

lope gives the expected annual energy output. The site-specific power 

duration curve is computed from windspeed distribution data taken at or 

near the site. The techniques used to compute these plots are given 

along with typical example problems so that the method can be applied by 

the sponsor to any site-specific problem. 

19. In the example of computing windmill performance using the 

power coefficient and then computing a power duration envelope, an 

optimum load match is assumed to occur between windmill output and load 

demand. In some applications, optimum load matching is a realistic 

assumption, but in cases where it does not occur, some technique is 

required to account for the loss of available energy due to load mis- 

matching. A methodology is given in the study results that can be 

applied to site-specific load demand and time-dependent local energy 

source data to arrive at a statistically averaged load factor. Also, a 

similar method of analysis is given to compute required energy storage 

capacity, given the probabilities of minimum threshold local energy 

intensity occurring over specific lengths of time. 

20. A similar set of methodologies is given for each type of 

local energy source. A sizing and performance analysis is made, using 

selected site data and appropriate energy systems that realistically 

showed promise of application at the specific sites. 

Cost Benefits 

21. A complete cost benefit analysis was not made on each alterna- 

tive power system due to lack of data. The principal problem is that 

there is little or no basis for comparison inasmuch as there is no 

dredged material processing of any consequence taking place at present. 

However, at the time of application of alternative power systems, the 

following analysis method should be followed. 
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22. Each energy system should be analyzed for its cost, which 

should include the capital investment in machinery and its installation, 

the expected average annual maintenance expenses, and the cost of fuel. 

Where possible, real cost data should be used; but, when these data are 

not available, estimates should be made based on cost information obtained 

on similar devices. Costs of conventional machinery should be computed 

and used for comparison. Benefits should be computed by applying a 

present value cost analysis to each system, including a conventional 

system relying on petroleum fuel for energy. Benefits should then be 

reflected in a savings in life cycle cost of the local source energy 

system over the conventional system. The most likely benefit should be 

a savings in fuel expenses, but it could occur with a savings of capital 

investment and maintenance and operating expenses. Benefit should be 

also expressed as a net periodic savings in petroleum fuel. Values of 

interest rates and expected percentage rise in maintenance, operating, 

and fuel costs, as well as economic life, should be discussed with the 

sponsor prior to the analysis, and mutually agreeable values should be 

used. 

23. A savings-to-investment ratio should be computed from the 

cost-benefit results as a relative measure of the monetary value of the 

system. In addition, the cost of energy expected to be delivered to the 

dredged material equipment by the local energy system should be computed 

from annual expenses and expected annual energy output. Cost data 

should be parametrically presented in a comprehensive manner for ready 

use in subsequent site-specific analyses. 

Presentation 

24. Results are portrayed in tabular, graphical, equation, and 

pictorial form, depending on the nature of information being transmitted. 

Data appearing in tabular form include local source energy data, such 

as appropriate climatological data, physical characteristics of all 

19 



existing or conceptual energy systems examined in the study, specific 

system performance data, specific system cost data, and operating and 

maintenance data. 

25. Graphical results include presentations of available local 

source energy; time-dependent load and source power curves; parametric 

design curves, including the appropriate sizing information; and para- 

metric energy performance curves. Mathematical expressions used in the 

analysis are presented in a comprehensive manner. 

26. Pictorial illustrations, such as sketches and drawings, are 

provided to clarify images of the transmitted information. Sketches of 

proposed concepts showing their physical size and how they appear on a 

typical dredged material site are given. Drawings of existing equipment 

are presented when available. 

20 



PART III: POWER SOURCES 

Wind Power 

Introduction 

27. The idea of developing shaft power from the wind is very old. 

For centuries, windmills of crude aerodynamic design have been in use in 

Holland, Denmark, and North Germany for grinding wheat. Such wind 

machines provided high torques at slow rotating speeds but were 

inherently inefficient because of their low tip-speed-to-windspeed 

ratio. Small windmills were used to pump water on farms in the United 

States and in other parts of the world. The Smith-Putnam wind turbine 

in Vermont, which operated successfully from 1941 to 1945,l demonstrated 

the feasibility of developing large amounts of power from the wind. The 

two-biaded propeller of the machine was 175 ft in diameter and developed 

1,250 kw in a 24-mph wind. This wind machine generated electrical power 

synchronously. Numerous other wind-power systems in 20- to 100-L-w size 

have been used over the past 30 years. 2-5 

28. The evolution of the internal combustion engine and the 

growth of public electrical networks forced such windmills to disappear. 

Because of the diminishing supplies of fossil fuels today, however, 

interest in wind-power systems is renewed. Several companies market 

wind machines in 5- to 12-kw capacity. Currently, the National Aero- 

nautics and Space Administration (NASA), under the sponsorship of the 

Energy Research and Development Agency (ERDA), is developing a lOO-kw 

machine to generate electrical power. 6 ERDA is also funding numerous 

other wind-energy-related projects at various universities and private 

companies. 7 

29. Commercial wind generators are available in sizes from 50 to 

12,000 watts, with most designed to generate DC power only. Recently, 

some firms (Aerowatt of France and Elektro G.m.b.h. of Switzerland) have 

developed wind generators in sizes from 4- to 12-kw to produce 3-phase 

AC power. 

21 



30. The Aerowatt machine is designed to produce 4.1 kw at a 

windspeed of 16 mph with a propeller of 30.6 ft in diameter. The Elektro 

machines deliver 5 to 12 kw. The NASA 100-kw wind generator is still 

under development, and complete data on its performance are not yet 

available. 

31. The old farm-type windmill, because of its high torque charac- 

teristics, is well suited to pumping applications. A 6-hp model of such 

a windmill made by Aeromotor Company is shown in Figure 1. Table 1 

lists the necessary operational data on a 5-kw AC wind generator, 6- and 

12-kw DC Elektro wind generators, and the 6-hp Aeromotor pumping unit. 

32. A typical wind machine unit is designed to last for a period 

of 30 years. Therefore, when determining the economics of wind-power 

installations, this equipment life cycle should be used. A 12-kw DC 

unit installation is shown in Figure 2. 

33. The system is more fully described in Appendix A. 

Conversion of wind power to energy 

34. Feasibility. Wind as a source of energy has many applica- 

tions, will provide nonpolluting power, and will save fossil fuels for 

other important operations. Environmentally, the use of wind-powered 

systems for dredged material processing sites appears to be a promising 

application. For instance, utilization of wind power for operating 

dewatering systems may not require any storage of energy. A wind-power 

installation without storage (depending upon its size, the wind potential, 

and the remoteness of the site and the construction costs of installing 

the plant) can produce the power at a cost comparable to that of the 

existing sources of power such as a diesel engine or, in some circum- 

stances, a public utility. A preliminary survey of the existing wind 

data indicates that many locations in the continental United States have 

attractive wind-power potential, thus making the use of wind power for 

dredged materials processing feasible. 

35. Wind power has been used successfully in the past to pump 

water for drainage and irrigation of land areas in Holland. A typical 

drainage mill of crude design lifted water to a height of about 3 ft and 
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on the average pumped about 27,000 gal of water per hour during strong 

winds. The 19-ft-diameter, 4-bladed propeller of such a machine drained 

water from 37 to 50 acres of land area. Such mills converted only about 

16% of the wind energy into shaft power and operated at tip speeds two 

to three times the windspeed. Most of the drainage mills used a centrif- 

ugal pump capable of handling large water flows under very low heads; 

however, due to unsteady rotational speeds the pump efficiencies were 

less than 40%. The inherent low efficiency of the wind-powered centrif- 

ugal pumps is due to irregular rotational speeds and low operating 

heads. 

36. The American multibladed windmill has been used for pumping 

water on farms. Such a wind-power system converts about 30% of the 

wind's kinetic energy into shaft power; a corresponding figure for a 

modern propeller system is about 42%. The multibladed rotor, however: 

offers a good starting torque, a desirable feature for operating recipro- 

cating pumps. The windmill system is a relatively slow turning unit 

with the rotor-tip-speed-to-windspeed ratio of unity. In comparison, a 

propeller type rotor turns at tip speed ratios of 4 to 6. 

37. costs. The Aerowatt machine costs $19,000 and is designed to 

produce 4.1 kw at a windspeed of 16 mph with a propeller 30.6 ft in 

diameter. In comparison, the Elektro machines for 5 to 12 kw cost 

between $7,000 and $10,000. Clearly, from the initial-cost point of 

view the Aerowatt machine is not competitive with the Elektro units. In 

this study, the Aerowatt and NASA machines will not be included. 

38. A 6-hp old farm-type windmill made by Aeromotor Company with 

a pump and the mounting tower like that shown in Figure 1 sells for 

about $5,000. The equipment costs, including installation for each 

unit, are shown in Table 1. 

Solar Radiation 

Introduction 

39. The sun's energy falls upon Earth continuously and gives 

sustenance to all life. It has been the origin of most energy sources 
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known to date -wood, coal, natural gas, wind, ocean, etc. The direct 

conversion of this solar energy output to benefit mankind is currently 

receiving much research and implementation. With specific attention to 

dredged material processing operations, solar energy conversion applica- 

tions present a very formidable challenge. 

40. Man has been dependent upon the sun from the beginning of 

time, and acknowledged its existence in many ways. However, the first 

most notable attempt at converting this energy was Archimedes' setting 

fire to an attacking Roman sailing fleet in about 212 B.C. 

41. Much development work was accomplished during the Eighteenth, 

Nineteenth, and Twentieth Centuries on solar energy thermal conversion 

devices. It was not until the 1930's, however, that the photovoltaic 

cell proved its ability in directly converting solar energy to electric- 

ity. 

42. The sun's energy can be converted by one of three processes: 

(a) solar-chemical, (b) solar-thermal, and (c) solar-electric. Princi- 

pally, with dredged material processing operations, heat is provided to 

dry dredged material or electricity is provided to power electrical 

devices (pump motor). Each of the solar energy conversion processes is 

briefly discussed in Appendix B. 

Conversion of solar radiation to energy 

43. The effective application of any solar energy conversion 

process depends much on the individual components comprising the total 

system. 

44. The solar collector is the heart of the solar energy conver- 

sion process - "it's the bucket used to catch the sun's free energy." 

There are several types of collectors - flat-plate, concentrator, and 

solar cell- each best suited for converting solar energy to benefit 

man. 

a. The flat-plate solar collector is primarily used for low - 
and medium temperature (less than 2OO'F) fluid heating 
applications. It is the principal design utilized for 
agricultural product drying, pool water and domestic hot 
water heating, liquid process heating, and building space 
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heating and cooling. The main heat-carrying mediums used 
in the flat-plate collector are air and water (antifreeze, 
etc.). 

b. - The concentrator solar collector is chiefly utilized for 
solar-thermal energy conversion applications necessitating 
high output temperatures of the heat-carrying medium 
(e.g., to operate turbines for electrical generation). 

C. The solar cell, - or photovoltaic cell, directly converts 
sunlight to electrical current. Chiefly utilized in 
space vehicle applications in the past, it is currently 
receiving intensive development for terrestrial applica- 
tions. 

45. Appendix B discusses the basic construction materials and 

operating efficiencies of the various noted types of "solar collectors," 

as well as energy storage mediums and ancillary equipment required to 

make a solar energy conversion system operational. 

46. Feasibility. Flat-plate and concentrator solar collectors 

are currently being utilized in many diversified cost-effective ap- 

plications. The photovoltaic cell, however, is still much in the de- 

velopment stage and limited to remote-access applications where 

conventional power is difficult to obtain. 

47. Applications. Electrical generation and drying are those 

applications of the sun's energy that are economically appropriate to 

meet the energy demands for dredged material dewatering. 

48. Converting the sun's energy into electrical power is an 

important concern because of the dependence upon electrical devices in 

the United States. The solar-thermal-electric energy conversion process 

(solar concentrators, heat engine, and electrical generator) results in 

low overall efficiency and presents control and maintenance problems. 

The direct solar-electric process eliminates intermediate conversion 

equipment and requires minimum maintenance. The solar-electric process 

is more practical than the solar-thermal-electric process because of the 

limited and sparsely located electrical equipment at dredged material 

processing operation sites. Yet both solar energy conversion processes 

are still far from being cost-effective, when current or projected 
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availability and cost of conventional fossil fuels are considered, as 

well as the costs for material, labor, and maintenance of energy con- 

version process equipment. However, the process for future electrical 

generation, at selected or remote site locations, definitely points to 

that of direct photovoltaic conversion. 

49. Solar energy naturally helps dewater dredged material spread 

on the ground and exposed to the sun's heat. This natural method has 

two distinct disadvantages: (a) an insufficient amount of sun energy 

may be available to evaporate water as quickly as desired; and (b) the 

lack of control of the surrounding atmosphere to enhance evaporation 

and prevent the addition of unwanted moisture (such as rainwater). 

50. costs. It is difficult to accurately predict the post of 

undeveloped systems; however, some rough estimates can be made. 

51. Direct production of electricity by photovoltaics today costs 

between $5 and $20 per peak watt. At such costs the payback period is 

too large to consider. However, the Energy Research and Development 

Administration (ERDA) optimistically predicts that in 10 years the cost 

will be reduced to $0.50 per peak watt. Under these conditions, a cell 

with l-watt peak capacity operating for 1 day could produce about 5 watt- 

hours of energy. A simple payback period based on commercial electricity 

at $0.05 per kilowatt hour is 7 years. In other words, after 7 years, 

the electric power from the photovoltaic cell would be free. The life 

expectancy for a solar cell is 15 to 20 years. 

52. Mechanical power can be produced by using solar energy as a 

source of heat, but such solar-powered systems are not commercially 

available today, although they have been used over the past three cen- 

turies. Again, it is difficult to predict the total cost of a solar- 

powered engine; however, a minimum cost of the solar collection required 

can be obtained as follows: under favorable conditions the incident 

solar energy is about 0.1 hpfsq ft of surface area (oriented perpendicu- 

lar to the direct solar radiation). If an overall system efficiency of 
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10% is assumed, then 100 sq ft of collector surface area would be required 

to power a 1-hp engine. At present prices of $10 to $20 per square foot 

of collector area, the collector cost would be between $1000 and $2000. 

Hydraulic Power 

Introduction 

53. Among the alternative power devices that may be able to 

provide power for the equipment at dredged material processing areas are 

those using hydraulic energy. For this study, hydraulic power systems 

include those that convert the energy in tides, ocean thermal gradients, 

salinity differences, waves, or currents to usable power. 

Discussion of systems considered 

54. Tides. In the past, tides have received more attention than 

any other as potential sources of hydraulic power because these sources 

are predictable - but they are also highly site dependent. This site 

dependence has limited serious consideration of large tidal power plants 

primarily to France, Russia, and the United States, where there are 

sites with very high tide ranges lying near large natural basins. 
8-10 

No matter what size the tidal power plant is, large water storage basins 

are required. 

55. Tidal power systems do not appear to hold promise as poten- 

tial sources of power for dredged material processing. This is true 

because: (a) although tidal power may be cost effective on a large 

scale, it is probably not economical on the scale that would be required 

for dredged material processing; (b) the efficient use of tidal power on 

any scale depends to a large extent on the range of the tides at the 

dredge sites, and the tide ranges at the sites of interest in this study 

are not over 10 ft; and (c) tidewater holding basins that are required 

as part of tidal power systems are not generally available and could be 

used more efficiently as dredged material processing areas than as 

adjuncts to a power system for dredged material processing. Therefore, 

tidal power systems will not be considered further in this study. 
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56. Ocean thermal gradient. Presently, interest in renewable 

energy sources is focused on ocean thermal gradient power systems that 

use cold water at depth in the ocean and the warmer water near the 

surface in heat exchangers to produce power. The thermal gradients in 

the ocean are quite constant and remain so throughout the year at any 

location in the deep ocean. The power (from the sun) dissipated in 

maintaining the temperatures in the ocean is equal to about 40 billion 

Mw? But at a typical location in the tropics, this vast amount of 

power manifests itself as only a 27OF difference in temperature between 

the warm water at the surface and that 650 feet below. 
12 The efficiency 

of a heat exchanger operating with this meager temperature difference is 

very low (probably less than 4%). 

57. Nearshore thermal gradients are not nearly as constant as 

those in the deep ocean, and the temperature differences are much smaller. 

These characteristics make thermal gradient energy conversion unsuitable 

for nearshore waters. Therefore, this source of power will not be 

considered further as a power source for dredged material processing. 

58. Salinity. One potential source of hydraulic power that is 

present near many dredge sites is that of salinity differences. Such 

differences exist where freshwater meets seawater (e.g., at the mouth of 

a river at the ocean or in an embayment). It was theoretically estimated 

by Norman 13 that a United States total of almost 120,000 Mw of salinity 

power exists from runoff into the oceans and the Gulf of Mexico. The 

fact that this type of energy exists is evidenced by the osmotic pressure 

that builds up at a semipermeable membrane separating fresh and saline 

water and drives the freshwater to the other side. 

59. Some laboratory models of devices to tap energy from salinity 

differences have been devised, 
8-lo,14 but this energy source has not as 

yet been adequately researched. 
15 The development of an operational 

salinity power system is not expected in the foreseeable future, so this 

source of power for dredged material processing will not be considered 

further in this report. 
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60. Waves. The most clearly evident source of hydraulic energy 

is that of the waves that come to shore and expend their energy in 

breaking. Many devices have been conceived for conversion of wave 

energy to usable power. Available wave energy depends on the wave 

height (the vertical distance between the trough and crest of the wave) 

and period (the time between successive waves). High waves of long 

period have more energy than low waves of short period. Ocean waves 

vary widely, and the characteristics of these waves differ with location, 

season, and year. 

61. Four types of wave power systems have been conceived: (a) wave- 

induced surge, (b) orbital water particle motion, (c) vertical motion of 

the water surface, and (d) pressure changes under water. However, none 

of these wave power systems are much beyond the conceptual stage for 

land-based applications. 

62. The combination of the wave characteristics at dredged mate- 

rial processing sites may make energy from waves a viable alternative 

and one of the wave power systems above may make this extraction possible. 

Therefore, the equipment and analysis methodologies for wave power 

systems are described in Appendix C. 

63. Current. Another potential source of hydraulic power is 

water current. These currents include the major ocean currents, the 

currents in inland watercourses, the flow of dredged material in dredging 

operations, and the tidal currents in coastal waters. 

64. The feasibility of extracting sizeable amounts of power from 

the Florida Current portion of the Gulf Stream System, the most rapid 

ocean current near the U.S. coast, was investigated in 1974. It was 

found that, although the kinetic energy in the Florida Current off Miami 

has the potential of producing 25,000 Mw, it might not be possible to 

extract more than 4% of this power. 16 The highest speed portion of the 

Florida Current is several miles offshore* and limits the application of 

this potential source of hydraulic power for small shore-based activities, 

such as confined dredged material processing. 

* True of most major ocean currents. 
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65. Inland watercourse currents, on the other hand, may exist 

beside, or very near, dredging sites. The direct use of these currents 

without damming a stream or requiring a significant difference in eleva- 

tion along the stream is possible with turbines installed directly in 

the flow of the watercourse or with waterwheels. Power turbines are 

presently under development but are not yet available off the shelf. 

Waterwheels, used for centuries, are very inefficient compared to tur- 

bines. 

66. Currents in inland watercourses which may be dammed and have 

significant elevation differences along the stream can also be used to 

generate power. Small dams are used to store and elevate the water and 

discharge it through pipes to small hydraulic turbines that are available 

off the shelf. These turbines require an elevation head of at least 

6 ft and produce power up to 10 kw. 

67. Connecting such a turbine to the pipe carrying the discharge 

from hydraulic dredging operations could be another source of hydraulic 

power. The feasibility of using a solids-laden effluent to drive a 

freshwater turbine has not been demonstrated. 

68. Tidal currents in coastal waters (like inlets to bays or 

upstream of river mouths) change direction and distribution with time. 

This difference in flow characteristics from those of inland watercourses, 

which normally have unidirectional flow, requires adjustments to the 

power plant design to give effective energy recovery. 17 Such adjustments 

are possible. 

69. Major ocean currents as a power source for dredged material 

processing are not feasible. 

70. Direct use of unidirectional currents in inland watercourses 

and tidal currents in coastal waters without dams may have application 

to dredged material processing operations. Such current power systems 

and the analysis methodologies for these are described in Appendix C. 

71. Use of small off-the-shelf turbines for power generation from 

currents in inland watercourses with significant elevation differences 

along the watercourse and which may be dammed may be possible but is 
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site dependent. Adequate information is readily available on these 

turbines from manufacturers, like James Leffel Company in Springfield, 

Ohio; this equipment will not be discussed further in this report. 

72. Feasibility of using these small turbines to extract power 

from the discharged material from dredging operations is questionable. 

Conversion of hydraulic power to energy 

73. Feasibility. Waves and currents are more reasonable alterna- 

tive power sources for dredged material processing operations than other 

hydraulic sources. Tides, ocean thermal gradients, and salinity differ- 

ences are considered much less feasible alternatives at present. 

Consequently, only wave and current power systems are addressed further. 

74. Applications. Presently, wave or current power systems are 

not used extensively, and equipment is not available off the shelf 

except for small hydraulic turbines which generate small amounts of 

power (under 10 kw) from currents in dammed streams. These systems are 

usually found in rural areas, and the power they produce is used for 

domestic applications. 

75. costs. Cost information for hydraulic power systems of the 

wave and current types is minimal since these systems are primarily 

still in the early stages of development. 

76. Wave power systems cannot compete with existing power systems 

at today's fuel prices. 18 Based on the rough calculations these authors 

made without even including costs of moorings, accumulators, power 

generators, and turbines, a wave power system would cost $75O/kw of 

installed capacity. These calculations were made for waves of 5-ft 

height and 4-second period. 18 

77. Current power systems that require no head are under develop- 

ment, and an estimate of their cost was made by Somers and Shoupp. 19 

These authors, basing their estimates on immersed Kaplan turbogenerator 

units operating in the Florida current, calculated minimum costs of 

$lOO/kw for 50,000-kw units and about $2OO/kw for 5,000-kw units." 

Scaling laws would probably raise the cost of a 500-kw unit of this type 

to over $3OO/kw. 
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78. Current power systems for watercourses with elevation differ- 

ences along a river which may be dammed are available off the shelf. 

The costs of these systems are a function of the available head and 

quantity of flow in the watercourse. Typical costs for a head of 

10 feet and flows as given are: 

Power Flow 
(kw) (ft3/min) 

1 155 
3 370 
5 590 

Cost per kw 
($> 

6300 
2400 
1550 

Do-it-yourself units of this type can be made for elevation heads as low 

as 1.5 ft if reservoir land is available to contain the water. Such 

units are likely to be less efficient and more costly per kilowatt than 

manufactured units. 20 
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PART IV: REGIONAL ASSESSMENT OF POWER SOURCES 

Wind Power 

Potential for nine sites 

79. The wind-power potential of a given site is determined by use 

of the power duration curves in Figures 3 through 11 to compute the 

output of a wind machine of known performance data. For demonstration 

of the detailed computations, the output of the 5-kw AC Elektro unit was 

computed for the Buffalo site and is given in Table 2. Thus, by use of 

the wind data for each site and Equation A4, the output of the 5-kw unit 

was computed on a monthly and annual basis for all nine sites. The 

tabulation of results includes the available energy in the wind, the 

wind machine output, and its specific power output (SPO) by the month 

and year for the site. The results also include the average power 

coefficient for the machine at the site. A mean monthly value was 

recorded with the months of the year in which excess or deficiency of 

energy occurs. For completeness, the details of the predicted monthly 

and annual data on the performance of the 5-kw unit for the remaining 

eight sites are listed in Appendix D. 

80. For comparison, the total annual outputs of the other Elektro 

wind generators (the 6- and 12-kw DC power plants) were also computed 

for all nine sites and are shown in Table 3. There is a very small 

difference between the outputs of the 6-kw DC and the 5-kw AC units. 

The energy output of the 12-kw unit, however, is generally about 75% 

higher than the other two. The specific power output of the 5-kw AC 

unit is invariably higher than that of the 6-kw DC unit, which, in turn, 

is higher than that of the 12-kw DC unit. The data show that the 5-kw 

AC unit delivers its full rated output for a longer period than the 

other two units, thus showing a better match between unit and site. 
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Cost information 

81. The economics of wind power were determined for each site by 

dividing the equipment and installation costs of each power plant by its 

total output for a period of 30 years. Table 4 shows distribution of 

initial costs of the plants on a kilowatt-hour basis for the machine. 

It should be noted that at present the wind generators available commer- 

cially are not mass-produced and, thus, the cost of fabricating each 

unit is considerably higher than if it were mass-produced. Hence, to 

make a reasonable estimate of the initial costs per kilowatt-hour output 

of a wind-power installation, the interest on the initial capital required 

for the installation is not taken into account. In other words, it is 

assumed that the total cost, including the interest on the capital of a 

mass-produced unit, will be equal to the present selling price of the 

unit. It is clear from the data given in Table 4 that the equipment and 

other initial costs of delivering energy by the 5- or 6-kw units at 

Buffalo is about $O.O320/kw-hr, whereas, for the same units installed in 

the vicinity of Savannah, it is about $O.O845/kw-hr. Costs for the 12- 

kw unit, however, at these locations are $0.0243 and $O.O657/kw-hr, 

respectively. The ascending order of initial costs per kilowatt-hour of 

energy for the various sites is Buffalo, Galveston, Seattle, Norfolk, 

Detroit, Mobile, Philadelphia, Portland, and Savannah. It can be seen 

from the data that the distribution of initial costs for each kilowatt- 

hour for the 12-kw wind generator is generally about 22% lower than for 

the 5- or 6-kw machines. The costs for the 5-kw AC and 6-kw DC units 

are very close at all locations except at Portland, where the 5-kw 

machine is about 11% higher than the 6-kw unit. 

Solar Radiation 

82. The amount of sun energy available at the earth's surface is 

chiefly dependent upon: (1) geographical location, (2) altitude, (3) cli- 

matic conditions, (4) time of day and year, and (5) inclination and 
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orientation of the solar energy receiving surface. Recorded solar 

energy data, received on horizontal surfaces at selected site locations, 

are displayed in Table 5 and in Figure 12 for comparison only. If the 

collector surface is tilted facing south, the inclination angle greatly 

affects the amount of solar energy it receives throughout the year. 

This relationship is detailed in Appendix D, as well as other particulars 

pertinent to determining the availability of the amount of solar energy 

under given conditions. 

Hydraulic Power 

Potential for nine regions 

83. Wave power. The characteristics of ocean waves (height and 

period) vary widely on the coasts of the United States. Most of the 

waves off the West coast of the United States range in height from 3 to 

10 ft with periods from 5 to 11 set; on the East coast, 1 to 8 ft, 5 to 

9 set; and on the Gulf coast, 1 to 5 ft, 1 to 5 set (abstracted from 

data compiled in Reference 21). On both the East and West coasts higher 

waves of longer periods are found in the winter, but on the Gulf coast 

the wave heights and periods do not vary much except during hurricanes. 

The West coast appears more promising from the standpoint of the amount 

of wave power available; the East coast, less so; and the Gulf coast, 

least. However, Gulf coast waves would provide a more constant source 

of power, and their regularity may be an overriding consideration. 

Therefore, the wave characteristics at dredged material processing sites 

on any U.S. coast may be such that waves represent a viable energy 

source. 

84. However, waves are found at only two of the nine sites consid- 

ered: Galveston with waves averaging between 1 and 5 ft and Toledo with 

waves averaging 1 ft with occasional maximums of 8 ft. These waves are 

not consistently high enough to warrant further consideration of wave 

power as an energy option. 
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85. Current power. Theoretically, any unidirectional current may 

be used for the direct (i.e., without damming the watercourse) generation 

of power, but the economics of generating power (the capital cost of the 

equipment versus the cost benefits of the power produced) from weak 

currents make this generation infeasible. Only one of the nine sites 

has a purely unidirectional current: Cayuga Island in the Buffalo 

District where the average current is only 1.5 knots. Power generation 

at this site with this current would require a very large turbine with a 

volume of over 30,000 ft3. 

86. Although tidal currents, as well as unidirectional currents, 

can be used to directly generate power, a lower limit (2.1 knots) to the 

tidal current speed required to generate power exists. This limit is 

available in one direction (ebb or flood) at five of the nine sites 

considered, but at only one site (Portland District-Clatsop Spit) in 

both directions. 

Relative regional costs 

87. Four types of wave power systems have been conceived, but 

none of these has gone much beyond the conceptual stage of development 

for land-based applications. Preliminary estimates of the cost of wave 

power systems indicate that these systems cannot compete with existing 

power systems at today's fuel prices. Use of waves as an alternative 

source of power for dredged material processing is not feasible for the 

nine sites considered here. 

88. Current power systems for use in either unidirectional or 

tidal currents for watercourses that may not be dammed were considered. 

It was found that for unidirectional currents the vertical axis turbine 

was preferred; and for tidal currents, the Savonius rotor. Equipment 

components for these have been developed, but total systems for power 

production have not yet been assembled and tested. The power available 

from these is a function of the area of the system projected in the 

direction of current flow and the cube of the current speed. For example, 

a typical vertical axis turbine 60 ft in diameter with an overall effi- 

ciency of 44% operating in a 2-knot unidirectional current would produce 

50 kw. 
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89. Current power systems can be obtained off the shelf for 

dammed watercourses with an elevation head of at least 6 ft. The power 

generated with these off-the-shelf systems depends on the head and the 

flow in the watercourse but is limited to 5 kw when the elevation head 

is less than 10 ft. 

90. The cost of current power systems for use in watercourses 

that may not be dammed is estimated at $3OO/kw, assuming that a 500-kw 

system is used (this is the smallest current power system of this type 

that has been considered). The cost of a typical current power system 

(hydraulic turbine) for use in a dammed watercourse with a head of 10 ft 

is $1,55O/kw for a 5-kw system. 



PART V: CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

General 

91. Wind machine. Wind machines are commercially available now 

to provide electrical or mechanical power. Wind-generated electricity 

is shown to be comparable in cost to purchased electricity at certain 

dredging sites. However, even though wind power concepts are cost bene- 

ficial, they might prove to be technically unattractive because of the 

relatively low outputs available from a single machine. Matching of 

wind-derived energy to processing systems requires additional effort. 

92. Solar radiation. Commercial thermal solar collectors are not 

well adapted to proposed processing systems. Solar cell electrical de- 

vices are not cost competitive with conventional electricity sources at 

present. 

93. Hydraulic power. Hydraulic power extraction from river cur- 

rents, though possibly applicable, is not readily available. Wave power 

is limited in application and not commercially available at this time. 

Mini-hydroelectric plants on nearby streams may be applicable at certain 

sites. 

Wind power 

94. The following conclusions were reached: 

a. - Utilization of wind power to operate the dewatering systems 
at dredged material processing sites seems to be very prom- 
ising at Buffalo and Galveston - each with an annual avail- 
able energy density of 166 and 147 kw-hr/sq ft of the disk 
area, respectively. The sites in the vicinity of Norfolk, 
Detroit, Mobile, Philadelphia, and Seattle show marginal 
potential with yearly available energy density varying from 
84.8 to 115 kw-hr/sq ft of the disk area. Finally, the 
sites near Savannah and Portland, each with an energy den- 
sity of 57 and 67.6 kw-hr/sq ft/annum, show relatively 
poor promise. 

b. - Many practical constraints exist, however, which can in- 
fluence the application of wind power at dredged material 
sites, such as the necessity for special foundation designs 
and availability of suitable pumping equipment. Additional 
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research is required to determine the various constraints 
and their effect on the utilization of wind power at these 
sites. 

C. - Commercial wind machines with or without a generator with 
5- to 12-kw size are on the market and can deliver either 
AC or DC power or drive a water pump. In particular, 6-kw 
DC, 5-kw 3-phase AC, and 12-kw DC units are readily avail- 
able from Elektro company in Switzerland while a 6-hp wind- 
powered pumping unit is marketed by Aeromotor Company in 
the United States. These systems, with some modifications, 
can be adapted to the dewatering operations. 

d. - With commercial wind generators the cost (excluding the 
interest on the capital) of energy per kilowatt-hour de- 
livered at Buffalo by the 6-kw DC, 5-kw AC, and 12-kw DC 
units is estimated at $0.0317, $0.0323, and $0.0243, re- 
spectively. The cost per kilowatt-hour for the same three 
units at Savannah is $0.0847, $0.0843, and $0.0657, respec- 
tively. The cost of wind-generated power at the remainder 
of seven sites varies between that of Buffalo and Savannah 
(Table 4). 

e. - A procedure for computing wind energy potential using ex- 
isting long-term data for a site is presented, and it is 
shown that the windspeed and the corresponding power du- 
ration curves are powerful tools in estimating the wind- 
power potential of a site. It is suggested that special 
attention be given to the time of year in wind-power 
analysis because there are substantial variations in wind 
velocities from month to month. Next, the concept of the 
specific power output, a commonly used parameter for eval- 
uating the performance of a given wind machine installation, 
is introduced. 

f. - A correlation scheme, based on the statistical theory of 
turbulence, enables a wind energy prospector to readily 
and economically estimate the wind-power potential of a 
site without long-term wind data simply by making short- 
term measurements on the site and correlating them with 
the long-term data from the neighboring weather stations. 
The correlation scheme yields good results in cases where 
wind data follow the normal distribution. However, more 
work is required to extend the method to incorporate the 
effects of thermally induced turbulence and local terrain 
roughness. This will be published separately. 

IL- The method of mechanically mixing the wind generator out- 
put with the existing utility grid to operate a water pump 
at constant speed improves its efficiency and delivers 
continuous stable power. 
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Solar radiation 

95. Dredged material processing operations present a formidable 

challenge for solar energy conversion applications. Basic considerations 

are as follows: 

a. Water elimination from dredged material is of chief con- 
cern. 

b. Working environment, usually close to coastal waters, - 
usually indicates an overcast sky and water-salt-corrosion/ 
wind-spray conditions. 

C. Ground surface may be both muddy and dirty, as well as - 
unsettled. 

d. - Electrical power requirements are high for driving pumps, 
which would necessitate large solar collector receiving 
surface areas. 

e. Available space for solar collector array structures is - 
limited. 

f. Locations of operations tend not to be fixed in a static - 
position. 

Hydraulic power 

96. In the evaluation of hydraulic power sources as alternatives 

to conventional power for dredged material processing operations, cur- 

rents or waves were found to be better alternative sources of power than 

tides, ocean thermal gradients, or salinity differences. 

97. Current power systems for watercourses that may not be dammed 

have not been developed. However, current power systems for watercourses 

that may be dammed are available off the shelf and may be used where 

there is adequate reservoir space. Machines deriving their motive power 

from the end of pipelines have not been developed. 

Recommendations 

General 

98. It is recommended that a wind generator be installed at Buffalo 

or Galveston matched to a suitable dredged material processing system to 

demonstrate the utility of alternative power systems. 

Wind power 

99. Although wind generators with 5- to 12-kw capacity are 
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commercially available, the methods and hardware to utilize their variable 

outputs to match the characteristics of dewatering equipment at dredging 

sites have to be developed for efficient utilization of wind power. Fur- 

ther work, therefore, is recommended, as follows: 

a. Investigate impact of factors involved in practical uti- - 
lization of wind power. 

b. - Explore further the use of an automatic load switching 
device for matching loads to the generator's output and 
its use as a power mixing device. 

Solar radiation 

100. With regard to the findings and special emphasis on simplic- 

ity , reliability, and cost-effectiveness, the following recommendations 

are presented. 

a. - Attempts at electrical generation, via either the solar- 
thermal-electric or direct photovoltaic conversion, 
should be considered "experimental" - with all associated 
risks because of: (1) the low energy-conversion effi- 
ciency of the system, (2) the expensive capital equipment, 
and (3) the system hardware maintenance/control upkeep. 

b. - Thermal storage of solar energy should not be considered 
because of: (1) space limitations, (2) weight capacity 
consideration, and (3) movement of operations. 

Hydraulic power 

101. Current power systems for dammed watercourses are recommended 

where elevation head of over 6 ft along the watercourse can be obtained 

and where the power required is less than 5 kw. 

102. The following are not recommended: 

a. - Tidal, ocean thermal gradient, and salinity hydraulic 
power systems, because they are not feasible for dredged 
material processing operations. 

b. - Wave power systems, because land-bound applications are 
still under development and none of the nine sites have 
suitable wave conditions. 

C. Current power systems for undammed watercourses, because - 
these are still under development. 
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Figure 1. Aeromotor 6-hp, wind-driven water-pumping unit with a 
rotor diameter of 16 feet 
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Figure 2. Elektro 12-kw DC wind generator installation near 
Wintertzur, Switzerland. The wind machine has a 

propeller 21 feet 6 inches in diameter 
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available power duration curve 

total energy per 100 ft* of disk area = 14,735 kwh 

wind duration curve (annual average windspeed = 12.5 mph) 

Percent of Time in a Year Above a Given Windspeed or Available Power (8,760 hours) 

Figure 4. Windspeed and power duration curves for 
a site near Galveston 
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Figure 6. Windspeed and power duration curves for 
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available power duration curve 

total available energy per 100 ft’ of propeller disk area = 5,734 kwh 

wind duration curve (annual average windspeed = 8.4 mph) 

Percent of Time in a Year Above a Given Windspeed or Available Power (8,760 hours) 

Figure 7. Windspeed and power duration curves for 
a site near Savannah 
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Figure 8. Windspeed and power duration curves for 
a site near Mobile 
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total available energy per 100 ft* of propeller disk area = 9,374.4 kwh 

wind duration curve (annual average windspeed = 10.3 mph) 
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Figure 9. Windspeed and power duration curves for 
a site near Detroit 
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available power duration curve 

total available energy per 100 ft2 of propeller disk area = 11.497.5 kwh 

wind duration curve (annual average windspeed = 10.7 mph) 

Percent of Time in a Year Above a Given Windspeed or Available Power (8,760 hours) 

Figure 11. Windspeed and power duration curves for a site 
near Seattle (Tacoma Airport) 
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Table 1 

Data on Elektro G.m.b.h. Wind Generators and the Winddriven 
Aeromotor Water Pumping Unit 

(Life expectancy is 30 years for all units.) 

Item 

Propeller: 

diameter 

no. of blades 

Rated Windspeed 
Cut-in Speed 

Furling Speed 

output 

Power Coefficient Cp 

Cost ($4 

wind generator 

tower 

installation 

Total ($1 

Elektro 6 kw 

DC Unit 

16 ft - 5 in. 

3 

26 mph 

8 mph 
45 mph 

6 kw at 65 VDC 

(or 115 FCD) at 

26 mph 

0.307 at 26 mph 

6,700 

1,800 

2,000 

10,500 

alncluding pump and tower 

16 ft - 5 in. 21 ft - 6 in. 

3 3 

23 mph 27 mph 

8 mph 8 mph 

45 mph 45 mph 

5 kw at 1 IO/190 IO kw, 110 VDC 

VAC at 23 mph at 27 mph 

frequency 12 kw, at 32 mph 
60-100 Hz 

56 

6,700 10,000 

1,800 2,000 

2,000 2,000 

10,500 14,000 

Aeromotor 

6-hp Water- 

pumping Unit 

16 ft 

18 

25 mph 

8 mph 

45 mph 

6 hp at 25 mph 

0.272 at 25 mph 
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Location 

Buffalo 

Galveston 

Seattle 

Detroit 

Norfolk 

Mobile 

Philadelphia 

Portland 

Savannah 

Table 3 

Summary of the Total Annual Output and the Specific Power Output 

of the Three Elektro Wind Generators for all the Nine Sites 

Annual 

Average 

Windspeed 

(mph) 

12.4 

12.5 

10.7 

10.3 

10.2 

10.0 

9.6 

7.7 

8.4 

5kw, 3-Phase 

AC Unit T 

a SPO = units of kw-hr per kw-yr. 

SPOa 

2163 

2015 

1637 

1367 

1422 

1276 

1218 

873 

823 

output 

kw-hr 

10,815 

10,075 

8,185 

6,835 

7,110 

6,380 

6,090 

4,365 

4,150 

6-kw 

DC Unit 

58 

SPO 

1849 

1768 

1387 

1153 

1145 

1076 

1028 

804 

689 

output 

kw-hr 

11,094 

10,609 

8,322 

6,918 

6,870 

6,456 

6,167 

4,823 

4,134 

T 12-kw 

DC Unit 

SPO 

1605 

1533 

1196 

992 

985 

926 

885 

693 

591 

! 
I 

output 

kw-hr 

19,260 

18,396 

14,352 

11,902 

11,820 

11,112 

10,620 

8,316 

7,092 



Table 4 

Equipment and Installation Costs of Electrical Output 

Produced by Elektro Units 
(The initial costs per kw-hr do not include the interest on the capital.) 

Location 

Buffalo 

Galveston 

Seattle 

Detroit 

Norfolk 

Mobile 

Philadelphia 

Portland 

Savannah 

6-kw DC 5-kw, 3 Phase 12-kw 
Unit AC Unit DC Unit 

($/kw-hr) ($/kw-hr) ($/kw-hr) 

0.0317 0.0323 0.0243 

0.0330 0.0347 0.0253 

0.0420 0.0427 0.0327 

0.0507 0.0513 0.0393 

0.0510 0.0493 0.0393 

0.0543 0.0550 0.0420 

0.0567 0.0573 0.0440 

0.0727 0.0803 0.0560 

0.0847 0.0843 0.0657 
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APPENDIX F: NOTATION 

Disk area through which fluid (wind or water) is moving 

Surface area under consideration, ft2 

Projected (in the current direction) area 

Wind-power constant evaluated from long-term wind data 

Wind-power coefficient 

Specific heat of substance 

Temperature differential 

Energy 

Total energy output 

Frequency of the grid supply 

Amount of water stored, gal 

Acceleration of gravity (32.2 ft/sec2) 

Significant wave height, the average height of the highest third 
of the waves 

20 Convective heat transfer coefficient, Btu/hr-ft - F 

Mass of substance 

Design speed of the grid motor 

Atmospheric pressure, lb/in.2 

Number of poles in the field winding of the grid supply 

Partial pressure of water vapor in air at air temperature (t,), 
lb/in.2 

Power potential of water currents 

Rated output of wind machine using power duration curves 

Wind power per unit time 

Vapor pressure of water at water temperature (tw), lb/in. 2 

Power per foot of wave front width, kw 

Instantaneous power output of a wind machine 

Energy, Btu 

SRi/SEh ratio 

Average daily solar radiation received on a horizontal surface, 
lylday 

Fl 
i 



F2 
i 

SE 
0 

Average daily extraterrestrial solar radiation received on a 
horizontal surface, lylday 

SPO Specific power output, the ratio of the total annual output of 
the wind-power plant to its rated output 

SR i 

S 

T 

T' 

TA 

t 

tf 
t i 
U 

V' 

V 

v(t) 

V 

W 

W' 

Z 

E 

Average daily solar radiation received on a south-facing surface 
(angle from horizontal), ly/day 

Slip of the grid supply 

Time period 

Wave period 

Time adjustment, min 

Time 

Final temperature of substance, OF 

Initial temperature of substance, OF 

Mean windspeed 

Heat of vaporization of water, Btu/lb 

Windspeed 

Windspeed at given instant of time t 

Current velocity 

Humidity ratio 

Width of wave front 

Amount of water vapor in lb/hr 

Weight density of fluid (62.4 lb/ft3 for fresh water and 64 lb/ft3 
for seawater) 

Energy dissipation rate in ft2/sec 

Overall efficiency 

Mass density of air 

Mass density of fluid (2 lb-sec2/ft4 for seawater) 

Energy pattern factor 

Asymptotic value of $(U,T) 
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i\l’I’~:NI)IY A. , . WI Nl) PUWEK ANA1.Y S 1 S MiI’t10l~01.0(~ I KS 
ANI) CONVEKS I ON SYS?‘f:HS 

Analysis Methodologies 

Wind energy calculations 

1. The instantaneous power available in tile wind is the kinetic 

energy per unit time L) 1_ :I (‘0 I umn II f ;I i r mov in): undisturbed through a 

finite disk area. I:vpI i( II i’ , !  ‘1% I’di , I’! I)* is 

P(t) = + oa A V3(t) (Al) 

where p 
a 

= the mass density of air 

A = the disk area through which the wind is blowing 

V(t) = the windspeed at a given instant of .time t 

In Equation Al, the changes in the ambient air density pa due to daily 

and seasonal temperature variations are considered to be small; thus, 

these changes will be considered as independent of time at a given 

location. Integrating Equation Al over time t yields the energy availa- 

ble in the wind over an arbitrary period of time (e.g., T). Thus, the 

energy E is 

E = L 
T 1 

P(t)dt = y pa A AT V3(t)dt (AZ) 

Since V(t) is available as a set of numbers, E is generally obtained by 

numerical evaluation of the integral. A standard numerical integration 

technique, such as trapezoidal rule, yields fairly accurate results. 

2. A wind machine can convert only a fraction of the available 

power into the shaft output, thus implying that t$e expression of Equa- 

tion Al must be multiplied by a conversion factor to obtain the power 

* For convenience, symbols and unusual abbrevistions are listed and 
dcf incsd in ttlca Notnt ion of Appcsndix I:. 

Al 



output of the wind machine. The theoret ical ly Limiting value of the 

conversion factor for a propeller mactline is 0.593. Thus, the instan- 
taneous power output of a given wind machint) at V(t) is 

PW(t) = +C[,(v)o;l A v’(r), (A3) 

where the factor Cp(V) is called the “power coefficient” of the machine. 

For a conventional propeller machine, depending upon the windspeed V(t), 

Cp(V) varies from 0.4 to 0. Finally, the total energy output E1,, of a 

wind machine over a time period 1’ is 

:\ 0 ’ L,>(V) ?(t)dt (A41 

3. Further, the power coefficient Cp(V) for a given wind machine 

is easily obtainable from its design and performance characteristics by 

solving Equation A3 for Cp(V). As an example, Cp(V) for a commercially 

available 5-kw wind generator was computed; the results appear in Table Al. 

A plot of Cp(V) versus V for the same machine is shown in Figure Al. 

The values of Cp(V) for windspeed values at or below 7 mph are zero 

because the wind machine has a cut-in speed of 8 mph. The machirie 

starts producing the full output of 5 kw at a windspeed of 23 mph and 

has a furling (shut-down) speed of 45 mph to protect it against storms 

and gales. 

4. Specific power output (SPO) is a commonly used variable for 

evaluating the performance of wind machines. For a given location it is 

defined as the ratio of the total annual output of the wind-power plant 

to its rated output. Since the annual output is generally measured in 

kw-hr and the rated output of t!!c machine is specified in kw, the SPO is 

stated in units of kw-hr/kw-yr, I$y analytically ustng Equation A4, SPO 

for a wind macllinc inst;il tat ion is given by 



5. Existing surfacca wind data in the form of windspeed, usually 

given in miles per hour or knots, arc measured by an anemometer, with 

obscrvnt ions made each hour. Another way of presenting wind data for a 

given location is to prepare drawings of monthly or annual frequency 

distribution of windspecd and direction, called “wind roses.” The wind 

data arc compi Icd as pcarc’(‘ntagc f rcquc,nc,y of windspeed and direction 

groups. To ii wind-c~n~*ri:~ ,III.!!’ ’ I/I, !  I-I~~IIIL’II(‘V (lf wind direction at a 

given location may be impur tant in siting a given wind machine, but for 

cstjmntion of the output of the mach;ne at the location over a certain 

period of time, the wind direction is of little importance. Thus, for 

this study, the wind data for each site are listed as a total of frequen- 

cies for all directions. Table A2 is an example of the format of the 

hfstorical wind data avatlable from National Climatic Center. The data 

are given by the month and the year as a percentage of frequency of 

windspeed in a given speed or range. The data in the tables were based 

on the observations taken during 1951 to 1960. 

I)cfiscr Ipt ions of Conversion Systems ---.-- 

6. ‘I‘l~c~ windmil I-dr ivc.11 t-(‘c il)ro( ;~t illg 1)tm,11s gcancral ly are designed 

to I~ilIIdlC’ rcblatlvcly small ;imounts trf water at high lifts for trnnafer- 

ring tl~ca wilLc*r LO clc*vatctl tanks. At dredged mater-I;11 cr)ntainmcrlt 



:,itl”s, pt,mp i ng 5 ;st cm5 ~~,Ip<‘l> I C’ (11 tran.~f(~rrirlg I.lrge q~~;~ntititss of fluid 

against low to modt~r,lL<’ II~,.I~’ ,i~-* t c fi11 i 1-1~1. hlf,st of st~c,ll pumping units 

are required to I~andlc~ trc’aded water containing 3 wide variety of solids, 

including silts, clays, and inorganic matter. Further, if such pumps 

wore dr ivcn by wind-power sourccas, they would opcratcs under variable 

input torque. Genera 11 y , ttic, var iahle tcjrque input LCI tile pump shaft 
.’ 

results in a varinhlk? speed opernt ion which in turn causes higher 

Icrsses of energy. l’rc~s~~nt I v, no t>f f- I l~(,-<I>e 1 f pumping hardware is 

suitable for pumping muddv w;~t~ar r~!ld, .I( tl1c3 same time, compatible with 

the wind turbine output. ll~>w~~vc~r, wind-gcn~~rated electricity offers 

more f lcxibil i ty in operating equ ipmtsnt and systems at the sites. 

7. Another factor LO hcs i,<,nsidercd while applying wind ppqer at 

the dredged material site is construction cost of installing the wind- 

power installation. At most sites, loc.ating a wind-power system may 

require special foundation design due to the poor bearing capacity of 

the local soil. Special construction features may result in additional 

costs and thus raise the cost of the power produced on a per kilowatt- 

hour basis. Additional research is necessary to fully assess the prac- 

tical utilization of wind power at dredged material sites. 

8. For dewaterfng dredge containment sites comprised mostly of 

sand, the conventional pump designs of either the reciprocating or the 

centrifugal type may suffice. Price Island in the Portland District 

(Appendix D) is an example of such a site, which occupies a land area of 

about 1.20 acres. Prcbl imirl:lrv s ,j I, ,II.II ions sllow that two 16-ft-diam 

Aeromotor pumping units CI~C’ ~~nough !or dcwatering the Price Island site. 

9. Set torov 
4 

suggested that to use wind power for water pumping 

and irrigation installation, it is generally most convenient to operate 

the centrifugal pump electrically from the output of a wind generator. 

Such an arrangement ensures nearly constant-speed operation of the pump 

without deteriorating its efficiency. Al so, direct conversion of wind 

energy into electricity offers more flexibility in tts usage. For 

,\ ‘I 



cxdm, I I’, if L1,c. ~‘IccLrt)-l,sm(,sis rnt,Lllrd (11. cl~xw;~tt.r irlg is ;apl~l icd ;rt <I 

si tt-, Lllc~ wind-,qcsnctratcd c*l~ac’tri(.i TV may bc ust,d Cor tI11, ~*lc*c.trod~~.s .III~ 

for c~p(*ril t ing tllcs w;itc,r ptlrnp s imu I I ;~1jt’0(19 I V. 

10. 1it.c ;l,,s~’ 01 tlic, r.lrdom ri;ltrlr-c* I~I III~, w;rld, ;~u ,\(I gc,lleratlrt- 

d r i VC*II 17) <I wird-powc,rcd t-c1l(lr r4i I I dcfil ivc,r c~Ic~~.tri<~ity witi1 variable, 

vo I tagt ;~nd /~rf’qtic’nt.y . ‘I‘Ot, v;Ir i;lI,I~~ ft-~~qri~~n~.y powc’r, if suppI icsd to a 

motor driving ~IIc~ w*ltt,r I i I t 1)1li1)11, w i I I i~l~~~f-clt C’ it at irrt)gular speeds. 

To kccsp tllc cos L of tl1~5 csllc*t-gy produced low, it is cssrkntial to fill ly 

utilize, tl1~2 output from ttte wind gcsnerator. That is, utilization of tilt 

gcncsr;] tc,d power b(a tw<ac’n (‘II t- in and ratcad speed must bc done by ma tctl ing 

tile load to tllcs gener;ltr>r’s momc~ntar:/ (‘apac ity. TIIUS , to follow tl1c. 

generator’s ~jr~tput v~'t-sus windspecad ~liarac.tc~r ist its over its cnt ire 

opt*rat in): range’, LllC availabl~~ load sl,ould ht, inf initcly variahlc. I n 

practice, Il~~w~~vc~r. ttrc, infinit~sly vari;lbl<’ 1~1ad is almost impossible tcj 

obtain. Ont.~ cmvc~n icn t way is to dividca the available load into a 

series of small units and switch them in and out of the circuit to match 

tier generator’s instantaneous outpllt. Suc11 3 scheme requires an auto- 

matic switching device for applying tile load to the generator circuit. 

One such system employs rlectromcchanical relays for load switching and 

is now under dckvclopment at CCL, as shown in Figure AZ. The switching 

relays used are controlled by an electronic Logic circuit actuated by 

the generator output. In the operation of the switching device, the 

plots of Figure A3 show that the various switching sequences are a 

function of the generator output frequency for a five-step switching 

dcv ice. The schematic also shows that a rectifier converts the output 

of the 3-phase AC generator into a DC power required by the electrodes 

of the clectro-osmosis process. ‘l’l)e Loads Ll, L2, etc., refer to a bank 

of clectrodcs at convcnicant loc.at ic>n.s at the site. In fact, the concept 

of the switching dc~ii.t,< (Ii~,’ 81 (1 III 11~. ,.,1silv caxtendrd to a system 

for sharing tilt* ICJ;I~ wit11 tllc. C:XA~L~I~C: uLi lity or other source of clec- 

tricity siiml)ly by using two-position rcslays as shown in Figure AL. An 



11. Figure A5 is ;I st 11t~m.1 t ii’ 01 J svstem for mixing the grid and 

the wind-generated power met~lla~iically to drive a centrifugal pump at 

constant speed. .JIe pump is driven by two motors coupled to its shaft. 

One motor is a variable pole-induction rrrotor connected to the grid line. 

Ir respec t ive of tile windspeed, the pump operates at a constant speed 

corresponding to tllc dcssign specsd of the grid motor given by 

N = lLOF(l-s)/P’ (‘446) 

where F = the frequency in Hz of the grid supply 

s = the slip, which usually varies from 0.02 to 0.10 depending 
on the motor size 

P’ = the number of poles in the field winding 

The arrangement locks the wind-generator rotor to a speed corresponding 

to N. Thus, the changes in windspeed will result in a variable tip- 

speed-to-windspeed ratio of the rotor. For maximum efficiency, most 

commercial wind machines must operate at a fixed tip-speed-to-windspeed 

ratio. Hence, the rotor of a wind machine must turn at variable speed 

to maintain its t ip-speed-to-windspeed ratio close to its rated value. 

One method of optimizing this ratio is tc) allow a discrete change in the 



t-u tor spcc~d in various steps by changing tl\tx polc*s t>n tllc. mot<>r at somc~ 

preselected windspecBd5. ‘fllc- pc>lt- t,hanging ~‘an box done hv ;rn aut~)rn;~t it. 

switclling dcvi~,~~ r>i tilt, IVY”’ d i~i,il~~k~d ~b;lrI ic%r. ‘1’1~~~ i.0n~‘t.p t 1)~‘ i ng 

discussc%d u~cas ICOIII- “I- 1 i 1 #‘is, :,,I i r5 in lll<~ rang:” bctw~~c~ll 

tlic- cut-in and tilt, r-.i~l (1 ‘,;I~L,~ ,I! tlic, rr~~t~lr. In practicc~, doubling ttlc 

number of poles c‘an bt* done by ;r simplt’ parallel circuit scllemca. Fur tilc,r- 

invest iga t ion, howc>vclr , is r’qr~irc~d to pr,~vc’ tltc prac’ti(,abil itv <)f tilt, 

mctbod. 

12. Another system for dewatering dredged material processing 

sites is shown schematically in Figure A6. The system is simple and 

uses off-the-shelf components. The lifting of the water is done by a 

positive displacement device of reciprocating type, such as a diaphragm 

pump. To utilize the wind machine output efficiently, a set of two 

holding tanks is provided: as one is empt ird, the other stores the 

water being lifted. The system has a special advantage in that the lift 

pump never comes in contact with the water being lifted. The various 

valves on the 1 ines are cll~b~. t r i c .]I I v <lpc”a ted through some type of level 

sensor in the holding tanks. ‘The lift pump is driven by a wind machine 

through a mechanical coupling. The practicality of the system should be 

determined through field tests at a site where dewatering is a definite 

problem (e.g., at Mobile). 
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continuous clectro-osmotic dewatering 

,\I I 



r-’ A 
--+ 

t 

- 

,\ I .) 



t 

common header 

Flgurr, Ah. Wind1111 1 I-driven diaphragm pump system for dredged 
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Windspeed. mph 

Power Coefticient, 

Pw(t1 

‘P = xp,AV3(t) 

0 0 

3 0 

7 0 

10 0.443 

12 0.417 

15 0.390 

18 0.376 

23 0.370 

24 0.343 

31 0.163 

38 0.09 

46 0 
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‘l‘ypc5 or systems 

I . Solar-chemical. In tllc solar-c.l~c~mical c~rnversion ~jrc~c’cass, tIlta 

sun’s cncrgy is dirt,ctly converted into chemical energy t\lroug\l cllec- 

tronic processes within the solar co1 lect ing medium. ‘llr is is thra basic: 

mechanism of photosyntllesis. It provides For growth of plants, which 

can he consumed by various methods to provide heat, electricity, nutri- 

tion, etc. Figure Bl displays a flow diagram of a typical solar-chemical 

energy conversion process designed for heating application. 

2. The direct solar-chemic~al conversion process of plant growth 

(requiring water) COCII ii t>l, III i I i;.<,[l to 1x1 iminnte moisture from unwanted 

areas; Ilowever, tllis .il~j~rri.i~ !I i,l’t . . I L~ILC’S both planting and harvesting 

operations and may involve a Lengthy “plant growing” period. The basic 

solnr-chemical energy conversion process is be1 ieved to offer limited 

results in energy reduction of dredged material processing operations. 

3. Solar-thermal. The solar-thermal conversion process is the 

direct conversion of the sun’s energy into usable heat. (This is the 

basic driving force of other energy forms - wind, hydropower, ocean 

thermal gradients, ocean currents, etc.) This process is commonly 

utilized for air drying of agricultural products, heating pool water, 

preheating potable hot water, and providing heated air into building 

conditioning zones. 

4. An extension of the basic solar-thermal process is use of a 

heated fluid to provide powrlr for: (;i) operating an engine for a mechan- 

ical drive system and (1)) operating a turbine for electrical generation. 

This latter energy conversion is designated the solar-thermal-electric 

process, which is presently being investigated as the process for future 

large-srale electrical generation. Figures B2 and B3 show typical flow 

diagrams of the solar-thermal and solar-tlicrmal-elcctrFc energy convcr- 

s ion prt~c~c~sses, rcss ~CSC t i VC’ I v . 





9. Solar cell. Tile solar ccl 1 consists of a positive-negative 

(P-N) junction in a semiconductor between a positive (P) layer, whirl1 

contains movable positive charges, and a negative (N) layer, which 

contains movable t~lec~trons. Wllen sun1 ight is absorbed by ttlcs ccl 1, each 

photon unit of 1 ight produces a negative electron a.ld a positive charge. 

Ordinarily, ttlrsse would immetliatc~ly r~~combinc~ and result in the conver- 

s ion of 1 igh t to IIC~;I I . How~~v~~r, due, tcj thts pottxnt ial barrier at the P-N 

j uric t ion, the e 1 ec t rons produccld by thrs 1 ight in the N-layer are driven 

to the electrode , and the positive charges produced by the light in the 

I’-lnycsr are driven to the other electrode. As these electrons and 

positive charges build up at the two separate electrodes, a potential 

develops and electrical current Flows through the wires connecting the 

two electrodes. Figure 87 displays views of a typical photovoltaic 

solar cell. 

10. Various materials are being utilized in the construction of 

solar cells to achieve high energy conversion efficiencies and lower 

manufacturing costs. Most notable of these materials are: silicon, 

cadmium sulfide, and gallium arsenide. To date, average energy conver- 

sion efficiency of solar cells is only about 10%. 

Energy storage 

11. Numerous forms of devices for storing collected sun energy 

are botll available and I IIT~C”II ; 1)~ ;II~: r-,~<~~;lrc~hed. The principal methods 

of energy storage d is< u~5t.d HI LIII~ report arc Khermal and electrical. 

12. Thermal storage is the most common and involves increasing a 

storage substance’s temperature. Water is primary choice for thermal 

storage because of its ready availability and high heat capacity. Rocks 

provide a secondary storage selection but are chiefly used in air heating 

systems. 



15. Ply-WhL’C!lS, t LJel C’CllS, and other similar exotic energy 

storage devices are stil 1 in development; their applicability to dredged 

material processing operations is undetermined. 

Ancillary equipment 

16. To complete’ any solar energy c.onversion system, transmission, 

control and retrieval of thca energy collected and stored must be consid- 

ered. These topics will bcl briefly discussed below, with emphasis on 

solar-thermal system appl icat ions. 

17. Transmission. The energy transmission system consists basi- 

callv of: passage-ways for the heat-carrying medium and prime movers 

(e.g., water pump or air fan) of the heat transferring medium. Materials, 

size, and design of the passage-ways will be dependent upon: (a) the 

type of heat-carrying medium, (b) system pressure requirements, (c) corro- 

sion particulars, (d) temperatures expected, and (e) desired flow rate 

capacity. For air transporting systems, plastic pipe/duct-work will 

satisfy expected system requirements; for liquid transporting systems, 

metal piping is principally utilized (plastic may be used in limited 

applicntions). Choice of metal piping - inexpensive steel to expensive 

copper - depends upon system design requirements. 

18. Control. Controlling the operation of a solar energy conver- 

sion systc’m is of I)aramount impclrtanc~~. The term “control” reEers to 

switclling on-off or IT~~~IIIII.I~ i .11iil tc,rminal (energy retrieval) 

II II i t s . The 1aLter arca usual ly control led by specifically located 

H4 





Figure III. ‘I‘ypic;ll solar-chemical energy conversion process 
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(north of NW Hcrmpsh i r-t’) . ttc~rc)nc~mIls tat al. 23 were able to use tidal 

c‘urrent predi<.t ions hcLrc> bcc,ausc ttle site has water depths as great as 

60 f~ ;lnd indications of ptak (‘urrcnt influence down to the bottom. On 

ttlis basis it was ;jssurn<Bd tll,lt ~1 uniform current velocity distribution 

C!XiSLS down to 25 ft. It was al so pass ihlc to lay out on a chart a lOO- 

f t-wide path in t\lc river far enough from land that a uniform current 

across ttle path ccluld bc assumed. Therefore, a 30-f t-deep, 80-f t-wide 

current power sy..tem could be designed for this site using available 

10~3 1 source data. Unfortunately, not many sites are as ideal, so 

currc~nt mc;~suremc~nts must 1)~. 17~10~. b~~il1r-c~ power potent ial can bc estimated. 

Iksc r Qt inns CI~ Conversion Svscems _----.- 







3. 

4. 

5. 

6 . 

7. 

R. 

It must he compost~d c>f tile smallest possible 
number of moving parts. 

Al 1 harriers against seawater penetration 
must hcs positive; no rcsl iance upon working 
sea IS ) rotating or reciprocating. 

No operating parts shall he exposed to, or 
extend into, seawater. 

The unit shall be composed, insofar as possi- 
hlc, of components commercially available, of 
proven long-life reliability. 

Tllr configuration must be compact and rugged. 

‘l’l~c unit must produce usabl c’ power under 
ordfnnrv moder;ltca scaa state conditions.” 

Current power sys tcms 

15. The momentum exchange devices that have been considered for 

the ronversion of the energy in natural water currents to usable power 

arc: (a) horizontal axis turbines with the axis parallel to the current 

flow, like the Kaplan turbine or open propeller; (b) horizontal axis 

turbines with the axis perpendicular to the current flow, like the water 

wheel or Savonius rotor; (c) vertical axis turbines, like the Voith- 

Schneider propeller; and (d) others, like an invention using a series of 

parachute drogues. 
16 

16. Detailed analyses were made by Sheets 
17 

for the Kaplan turbine, 

open propeller, and vertical axis turbine when used underwater in a 

nearly constant velocity current and by Heronemus et al. 23 for the open 

propeller and Savonius rotor when used at the water surface for tidal 

f iver currents. Sheets .judged the vertical axis turbine superior for 

his application, and Heronemus et al. favored the Savonius rotor for 

their application. 
23 

These preferred current power systems are described 

in the following paragraphs, based on the work of References 17 and 23, 

respectively. Sheets considered the water wheel for submerged applica- 

tion and found it inferior to the other turbines he considered, but the 

water wllccl is includcad in the following discussion as a potentially 

1JHeflJ1 dcvicc Whc*ll used ;Jt ttlc WatcI- SUrfilc'k'. 



17. Vertical axis turhinc. A vcrti(.;Jl axis turbiri<* is shown in I__---_ 
Figure Cl. Advantages of such :i turb inca for c,onvc*rsion of wiltc*r current 

energy include: 

a. Neither the platform nor the turbine assembly has to bc - 
rotated rrlativc to thca curt-cnnt flow direction. 

4. No structure other than the blndes is in the wny of the 
current flow tllrough the turbine runners. 

C. The turbine runners c4n be desfgncd to account for cur- - 

:;;t,,;;:z; iry 
differences between the top and bottom of 

18. The turbine has the following disadvantages: 

a. Reasonable estimates of writer current velocities and - 
distribution with depth (hopefully me4suremcnts) nre 
required for design. 

1?* The turbine must be lnrger thnn either the Kaplan turbine 
or open propeller for the same flow velocity. 

C. The design for reliable blade adjustment to nccount for - 
vertical flow velocity 

7 
radients is complicntcd and the 

fabrication expensive.1 

19. Savonius rotor. ‘f11~~ S.~vonius rotor was developed for the 

measurement of water currc’nts. ‘1’11is rclLot- Is usuully oriented vertlcolly 

for measurement, but for extraction of current energy 4 horizontol 

orientation is considered, 4s shown in Figure C2. Some of the pros and 

cons of this rotor as a writer current energy conversion mechanism 4re 

given below. Its advantages include: 

4. - eometry makes it relatively inexpensive to 
iiErYt2BT3B 

b. Operation is possible with currents thnt reverse direc- - 
tlon.23 

Operation does not requlre the damming of 4 water source. 23 C. - 
20. The Savonius rotor has the following dlaadvantuges: 

3 . It lncks radial symmetry s:Dthe torque is not Hteady but - 
varies 4s the rotor turns. 

!2* Design of ttlis water surface* prnctrnting system muvt be 
very ncnsitivc to c*orroslon and t~lofoullny.23 

c. When in the horizonto configurutlon Aown, the rotor 
cannot efficiently extract energy from current In diruc- 
tionn other than perpendicul4r to the 4x1~. 



21. Wn ter wheels. Water wheels (Figure C3) were the traditional 

source of low power systems for centuries. Such a current power device 

has the following advantages: 

a . No research and development is required to make the watc,r 
wheel an effective water current energy extraction devtce. 

b . _1- The fabricat fun and maintenance arc not complex. 

22. The dfsadvant;1g~~s arc’: 

a. - A very large rotating structure is required above the 
relatively small Immersed paddles. 

1,. W;Itcr flow in only one direction is required. 

C8 



Figure Cl. Vertical axis turbine based on work by Sheets 17 
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Figure C3. Water wheel baaed on work by Sheete 17 



Wind I’owc*r Potent ial --___--- .-__ -_ 

I’ ’ 
as funct ions 0C wi I~c/s;/)(.(,c; V, ‘rr’,‘r~ ~\i~t o illc*d l-or ;rI 1 thr lllektro units 

and arc‘ given in Table Dl for later use. The detailed data on the 

pcsrformance of the Acromotor pumping unit are not available. 

Windsileed and power duration curves 

2. The windspeed V as a function of time t is not readily availa- 

ble from the existing data. As discussed in Appendix A, the wind data 

documented as a frequency of windspeed show the percentage of time (a 

year or a month) the windspeed was between certain values. The available 

data must, therefore, I)e reduced to the speed duration plot as follows. 

a . - 

b -* 

C. - 

Starting with the zero windspeed, determine the percentage 
of time the windspeed is above a certain predetermined 
value. For ins tnnce , for 100% of the time, windspeed is 
above zero; this gives one point on the speed-time chart. 

Next, determine from the wind data the percentage of time 
speed is abovca a given value and plot it on the chart. A 
smooth curve through the points renders the speed-duration 
curve for a location. The windspeed-duration curves, each 
with a duration of 1 year for each site, were drawn using 
the annual average data. 

Next, the wind-power duration curve is derived from the 
speed duration simply by cubing the ordinate (i.e., the 
windspeed V) and multiplying it by the factor (l/Z)pA to 
obtain the power available in a column of air flowing 
through given disk area A. 

The power duration curves, each with a duration of 1 year for each site, 

were prepared for later use. Roth the windspeed and the power duration 

curves for each of the nine selected sites are shown in Figures 3 through 

11. For simplicity, the disk area for the calculations was taken to be 

100 sq f t; thus, the ordinate of the power duration curves in the above 

flgurcs Is the avvlla~~llc powc’r per 100 .sq ft of the disk area. AlSO 

I) I 



prcparcd for comparison was the total nvnilnhlc c*nc,rgy pcbr 100 sq 

ft of tilt, disk arc’s ;It C,~C!I site for a duration <)f 1 year, or 8760 

hours ; the results are shown in ‘Table D2, which also givcls the ilnnll:l I 

average windspeed at each site. lhsed upcrn the rcsul ts of Table DP, 

Uuf falo, (in lves ton, and Seattle show an excellent potential for windpower 

conversion. Norfolk, Detroit, Mobile, and Phi ladelphin have an average 

potential for wind energy, hut Portland (Oregon) and Savannah (Georgia) 

show a relatively poor promise of wind energy. In summary, it can he 

stated that the windspccd duration and, hence, the corresponding power 

duration curves are useful tools in readily assessing the wind potential 

of a given site by simple calculations. 

Use of solar data 

3. The term “solar radiation,” is synonymous with the commonly 

accepted term of solar insolation and refers to the amount of sun energy 

received at the earth’s surface as terrestrial solar energy. 

4. Most solar radiation is measured with a horizontally positioned 

instrument called the pyranometer, which measures both the direct and 

diffuse components of the sun’s energy. These data are recorded on a 

daily (and in some cases, hourly) basis in units of the langley (ly) .* 

5. Data on the average daily terrestrial solar energy received on 

a horizontal surface are of limited direct use in many solar energy 

conversion appl ica t ions. What is sometimes more importantly desired 

are: (a) hourly solar radiation data ~. for hourly evaluation of particu- 

lars (system efficiency determination) of a solar energy conversion 

process; and (b) inclined receiving surface solar radiation data - For 

selection of optimum inclination or determination of energy received on 

a constrained receiving surface. Figures D2 and D3 show the typical 

daily distribution of solar radiation on clear days in the months of 



Solar Time = standard timca + ‘I’A + 4CMeridian Longitude) 

wllcre Standard Time = loc;ll c lock time at location of interest 
(adjust for daylight savings time, if 
app I icah le) 

TA = time adjustment, min (see Figure U5) 

Mer id ian = standard meridian of time zone, deg West 
(sc~c Figure 116) 

Long i tudc = I c)ng i tud~* ;iL Ioc’at ion of interest, deg West 

7. I.eng:tll of d;~y. 111<* Icngttl of day (sunrise to sunset) varies 

throughuut the year and wi tll geographical tat 1 tude. 

8. Hour& solar radiation. The amount of solar radiation received 

on a llorizontal receiving surface and available during various hours of 

the day is a pcrccntage of the total daily solar radiation for various 

lengths of day. This information is most useful for locations where 

day-long clear sky conditions prevail; for overcast sky, these data are 

less va 1 id. 

9. Inclined receiving surfaces. Many methods hove been proposed 

for c’s t ima t in&; t I,cd am~lun t of so 1 n r rnd in t ion, on inclined south-facing 

s u r I a c c s , from various known parameters. ‘I‘tle mcthud employed herein 

basically folIows :I rational(~ scat forth in Kcfcrcncc 31. The conversion 

of “tlorlzuntal” solar r;ld i;t t iorl t1;rt.l to “in~‘l incsd” solar radiation is 

made by tiica following rcI;~tionsl~ip: 



s Ii i = (SE:,,) (RA) 

where SR i = Average daily solar radiation received on a south-facing 
surface (angle from horizontal) in ly/day 

SEh = Average daily solar radiation received on a horizontal 
surface, ly/day 

s EL) = Average daily extraterrestrial solar radiation received 
on a horizontal surface, ly/day 

RA = SRI/SE,, ratio at given latitude, month, receiving surface 
inclination, and SE /SE0 ratio. h 

Data will be found in Reference 32. An example follows. 

EXAMPLE 

Location: San Antonio, Texas 

Latitude: 29.5O N 

Longitude: 98.5O W 

9. 

A. 

9. 
A. 

Q. 

A. 

9. 

A. 

What is the average daily amount of solar energy received on a 
horizontal surface in the months of February and September? 

February = 347 ly/day (1278 BTU/ft2-day) 
September = 493 ly/day (1818 BTU/ft2-day) 

What is the solar time at 1:00 p.m. standard time on September 15? 

Standard Time = 1:OO; TA = 5 minutes (see Figure D5); 
Meridian = 90 degrcc,s fs~,(a l:it:llr~a Dh); l.ongitude = 98.5 degrees 

(see input dater) 
Solar Time = 1:00 + 5 min + 4(90-98.5) = 1:05 - 34 min = 12:31 p.m. 

Assuming clear-sky conditions, how much solar radiation falls on a 
horizontal surface between 1:00 and 2:00 p.m. in September? 

Length of day is approximately 12.2 hours 
Solar Radiation = 12.4% of total daily input of 493 ly/day 

How much daily solar radiation falls on a 30-deg south-facing 
surface during the month of September? 

SE 0 = 786 ly/day (30 deg latitude) 

SE,, = 493 lylday 



RI\ = 1.10 (30 dug latitude, 30 deg, Scpt) 

5 = (SEh)(KA) = 493 ly/day (1.10) = 542 ly/day 

Hydraulic Power Potential 

Data 

10. Table D3 

for nine sites. 

Parametric plots 

furnishes the local source data for hydrau lit study 

11. Figures D7 to D9 are sizing and performance parametric plots 

for current power systems. These plots are intended to show the varia- 

tion of output power with the most frequently measured characteristics 

of currents. 

12. Figures D7 to D9 on the unidirectional current power system 

show the output power of devices of this type as a function of current 

speed. These plots are applicable to the size proportions and efficien- 

cies given on the figures for vertical axis turbines, Savonius rotors,, 

and waterwheels. 

13. Parametric plots of tidal current power are not included 

because there is no common parameter that may be portrayed as a function 

of output power at any site. Furthermore, the energy available in the 

tidal currents at eight of the nine sites is minimal, and good data near 

enough to the ninth are not available. 

D5 
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Figure Dl. Power versus windspeed characteristics of Elektro 
wind generators 
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Figure DZ. Average hoxrly solar radiation on tilted surfaces at 
40 N latitude in January 

6 

Tima of Day thoucr) 
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Table Dl 

Power Coefficient Cp Shown as a Function of Windspeed V for 
the Elektro G.m.b.h. Wind Machmes 

Windspeed 

hphl Elektro 
6-kw DC 

Power Coefficient 
Elektro 5-kw. 

3-Phase, 
AC Unit 

Elektro 12+kw 
AC Unit 

0 0 0 0 

3 0 0 0 

7 0 0 

10 

12 

15 

18 

23 

24 

26 

27 

32 

0.443 

0.417 

0.380 

0.376 

0.370 

0.343 

0.307 

0.288 

0.175 

0.443 

0.417 

0.380 

0.376 

0.310 

0.343 

0.260 

0232 

0.148 

0.080 

0 

0.443 

0.417 

0.380 

0.376 

0.370 

0.343 

0.307 

0.267 

0200 

38 0.106 0.123 

46 0 0 0 

l- 1 

I)1 3 



Table D2 

Available Energy Per 100 sq ft of the Disk Area m 1 Year (8760 hours) 

for the Nine Selected Sites 

Location 

Buffalo, New York 

Galveston. Texas 

Seattle, Washington 

Norfolk, Virginia 

Detroit, Michigan 

Mobile, Alabama 

Philadelphia, Pennsylvania 

PHI ll#l11l, HlHllrrrl 

LifiYflllllflll, HHIfIHIll 

Annual Average 
Windspeed 

(mph) 

Total Available Energy Per 
100 sq ft of the Disk Area 

in 1 Year 

(kw-hr1100 sq ft) 

12.4 

12.5 

10.7 

16,634 

14.735 

11,498 

10.2 10,121 

10.3 9,374 

10.0 8,892 

9.6 8,481 

jf H,lHd 
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Sources for nine sites 

Chesapeake Bay Institute 
The Johns Hopkins University 
Baltimore, MD 21218 

Department of Oceanography 
University of Washington 
Seattle, WA 98105 
(206) 543-5078 
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Department of Oceanography 
Oregon State University 
Corvallis, OR 97331 
(503) 754-3504 

Great Lakes Research Division 
Department of Meteorology and 

Oceanography 
University of Michigan 
Ann Arbor, MI 48104 
(303) 763-3183 

Institute of Oceanography 
Old Dominion University 
Norfolk, VA 23508 
(804) 489-6476 

Tnsitute of Storm Research 
University of St. Thomas 
4104 Mount Vernon 
Houston, TX 77006 
(713) 529-4891 

Scripps Institution of 
Oceanography 

Box 109 
La Jolla, CA 92037 
(714) 452-2230 

U.S. Geological Survey 
National Center 
Reston, VA 22092 
(703) 860-6867 

Woods Hole Oceanograph 
Woods Hole, MA 02543 
(617) 548-1400 

ic Inst itution 

Director 
Data Services Division, D76 

National Oceanic and Atmospheric 
Administration 

Washington, DC1 20235 
(202) 674-7500 

Gulf University Research Corporation 
227 System Building 
College Station, TX 77843 
(713) 846-2453 

Institute of Ocean Science and 
Engineering 

Catholic University of America 
Washington, DC 20017 
(202) 635-5000 

National Oceanographic Data Center 
Environmental Data Center 
2001 Wisconsin Avenue 
Washington, DC 20235 
(202) 634-7500 

U.S. Army Coastal Engineering Research 
Center 

Kingman Building 
Leaf and Telegraph Roads 
Fort Belvoir, VA 22060 
(202) 325-7393 

Virginia Institute of Marine Science 
Clouchester Point, VA 23062 
(804) 642-2111 
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