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An Introduc tion to Us ing B ayes ian Networks  to Model 

Dredging Dec is ions  

by Martin T . S c hultz and T homas  D. B orrowman 
 

PURPOSE: This technical note provides a brief introduction to Bayesian networks and discusses 
how they might be applied to model dredging decisions. This information has been condensed 
from a more detailed discussion of probabilistic networks in an Engineer Research and 
Development Center (ERDC) Technical Report (Schultz et al. 2011). That report also includes a 
detailed example demonstrating how Bayesian networks could be used to model navigation 
dredging decisions. 

BACKGROUND: A decision is an action that leads to an allocation of resources or an outcome 
that is irrevocable, or nearly so, because it would be very costly to restore the allocation that 
existed prior to the action (Howard 1966). The term decision analysis was coined by Howard 
(1966) to describe a logical procedure for the balancing of the factors that influence a decision 
when the outcomes are uncertain. In practical applications of decision analysis, the objective is to 
develop a structural model of the decision that includes specific references to sources of 
uncertainty and to a decision maker’s objectives, alternatives, and preferences. Decision models 
differ from bio-physical and engineering models, such as hydrologic models or fate and transport 
models, although they may incorporate such models as components. The nominal purpose of a 
decision model is to identify an alternative course of action that maximizes the decision maker’s 
expected net benefit and to assess the robustness of an alternative in the face of uncertainty and 
conflicting value systems. However, there are a number of additional benefits to decision 
modeling. Decision models also help decision makers to identify the most important drivers in a 
decision, evaluate controversies among stakeholders, evaluate opportunities to obtain better 
information before making a decision, and implement adaptive management strategies. 

INTRODUCTION: There are many sources of uncertainty in dredging decisions. For example, 
there may be uncertainty about the conditions at the dredging site, the environmental response to 
dredging operations, and the economic benefits of project investments. These uncertainties can 
lead to stakeholder conflicts, lengthy and costly project delays, and costly restrictions on dredging 
activities, including restrictions on the timing of dredging operations and dredging methods (Reine 
et al. 1998). Decision models can help improve the quality of dredging decisions by analyzing 
sources of uncertainty that may influence the outcome of a decision to estimate the probability of 
potential economic and environmental outcomes. This risk-informed decision-making approach is 
consistent with U.S. Army Corps of Engineers (USACE) planning guidelines. 

Bayesian networks provide a practical and broadly applicable means of implementing risk-
informed decision making. Examples of dredging decision problems that might be modeled 
using Bayesian networks include: 
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• Should a navigation channel be authorized or constructed (or deepened)? 

• Which potential location is the best location for the navigation channel? 

• Should a more detailed environmental assessment be completed? 

• Should the navigation channel be dredged to authorized depth and, if not, how deep should 
the navigation channel be dredged? 

• What type of dredging equipment should be used? Which type is most cost-effective? 

• What is the optimal timing of dredging operations (environmental windows)? 

• What operating limits should be placed on dredgers (e.g., operating speed, bucket size, etc.)? 

• What dredged material disposal alternative maximizes net benefits of a dredging project? 

• How frequently should a navigation channel be scheduled for maintenance dredging? 

• Which sediment disposal alternative should be selected? 

In addition to providing an efficient way to analyze many sources of uncertainty in a decision 
model, there are a number of other advantages to using Bayesian networks for decision modeling: 

• Bayesian networks enable the developer to integrate the results of multiple bio-physical and 
engineering models that address different parts of a system to create a comprehensive 
systems-level model. These models may be considered incompatible because of issues 
related to, for example, spatial and temporal scale or data transfer.  

• Bayesian networks permit information to be expressed in both qualitative and quantitative 
terms while preserving mathematical rigor in the analysis of uncertainty.  

• Bayesian networks permit the integration of objective and subjective (expert) knowledge and 
the representation of uncertainty in subjective knowledge.  

• The graphical structure of Bayesian networks is ideal for communicating information about 
how uncertain variables may be influencing the decision problem with stakeholders and 
incorporating information about stakeholder concerns into the decision-making process.  

• Bayesian networks provide a platform for adaptive management, a process by which 
recurring decisions are updated after new information has been collected. 

• Bayesian networks provide a platform for value of information analysis to assess the benefits 
of reducing uncertainty, prioritizing data collection needs, and estimating how much should 
be invested in collecting additional data. 

• Bayesian networks can be used for statistical inference (probabilistic reasoning about the 
system).  

Bayesian networks have been used to analyze a broad cross-section of environmental 
management problems and decisions. The literature on Bayesian network applications includes 
efforts to diagnose causes of ecological problems and to predict the outcomes of environmental 
management decisions. Table 1 lists 27 examples of Bayesian networks applied to environmental 
inference and decision problems. For each entry, the table notes the substantive issue that was 
addressed in each study.  
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Table 1. Bayesian network applications from the literature. 
Author(s) Year Substantive issue addressed in the study 

Adriaenssens et al. 2004 Predict the presence and abundance of macro-invertebrate taxa (Gammaridae and 
Asellidae) in European rivers. 

Ames et al. 2005 Evaluate watershed management alternatives by estimating the probability of 
meeting water quality criteria in the East Canyon watershed of Utah. 

Amstrup et al. 2008 Assess the probability of polar bear (Ursus maritimus) extinction in out years given 
projections in habitat conditions under climate change scenarios. 

Bacon et al. 2002 Identify factors that might lead to a change in land use from farming to forestry in 
marginal upland areas of the United Kingdom. 

Barton et al. 2008 Evaluate eutrophication mitigation costs relative to benefits in the Morsa river 
watershed of Southeastern Norway.  

Bromley et al. 2005 Select demand-side water management strategies. 

Burgman et al. 2010 Assess the probability of locating and successfully eradicating red imported fire ants 
(Solenopsis invicta) in southern Queensland, Australia. 

Gibbs 2007 Evaluate the risks posed by aquaculture development to shorebird populations in 
New Zealand. 

Kragt et al. 2009 Evaluate watershed management alternatives in the George watershed on the 
northeast coast of Tasmania.  

Kuikka et al. 1999 Determine the best mesh size for use in the Baltic cod (Gadus morhua) fishery. 

Lee et al.  1997 Assess the risks of land use decisions to salmonid populations in the Pacific 
Northwest. 

Marcot 2006a Predict the presence of a species in a plot of land area (Marcot et al. 2006a). 

Marcot 2006b Decide whether to conduct surveys on the ground to determine the presence of a 
particular sensitive species at a location (Marcot et al. 2006b). 

McNay et al. 2006 Classify habitat suitability and evaluate the efficacy of woodland caribou (Rangifer 
tarandus) habitat management alternatives. 

Newman et al.  2007 Identify the most likely causes of liver lesions in fish populations of Puget Sound, 
Washington. 

Nyberg et al. 2006 Assess the suitability of forest stands to provide woodland caribou (Rangifer 
tarandus) winter forage employing active adaptive management.  

Petersen et al. 2008 Evaluate tradeoffs in the decision to remove barriers to westslope cutthroat trout 
(Oncorhynchus clarki lewisi) migration in mountain streams.  

Pike 2004 Assess the probability of drinking water treatment plant violations using information 
about conditions inside and outside the plant. 

Pollino et al. 2007a Identify the causes leading to dieback of an endangered plant species (Eucalypt 
camphora). 

Pollino et al. 2007b Evaluate the impact of changes in hydraulic and structural habitat on future fish 
abundance and diversity in the Goulburn River, Victoria, Australia.  

Sadoddin et al. 2005 Evaluate the influence of dryland salinity management alternatives in the Goulburn 
watershed, Australia. 

Shepard et al. 1997 Assess the causes behind westslope cutthroat trout population declines in western 
Montana. 

Smith et al. 2007 Assess the suitability of habitat for the Julia Creek dunnart (Sminthopsis douglasi), 
an endangered marsupial. 

Stewart-Koster et al. 2010 Identify the best strategies for managing dissolved oxygen in streams. 

Stewart-Koster et al. 2010 Identify the best strategies for managing invasive aquatic nuisance macrophytes in 
streams. 

Ticehurst et al. 2007 Assess the sustainability of social, economic, and environmental values in coastal 
lake catchments in New South Wales, Australia. 

Ticehurst et al. 2008 Evaluate management alternatives for Merimbula Lake in New South Wales 
considering economic, social, and environmental factors. 
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BAYESIAN NETWORKS: Bayesian networks provide an efficient way to address a large 
number of uncertainties in the decision-making process. A Bayesian network consists of a 
graphical structure and probability tables (Pearl 1988). A graph is a set of nodes that represent 
random variables in a system and directed edges (arrows) between nodes that indicate causal 
influence among random variables in that system (Figure 1(a)). Formally, the graph is a directed 
acyclic graph (DAG) because influence flows through the network in the direction of the edges, 
from parent nodes to child nodes, and child nodes exert no causal influence on the parent nodes. 
For example, in Figure 1(a), node X1 is a parent of nodes X3 and X5. Nodes X3 and X5 are 
called child nodes in relation to node X1. The directed edge between a parent node and a child 
node means that knowledge about the state of the parent node will influence the modeler’s 
degree of belief about the state of the child node.  

X1

X3 X4

X2

X5  

X1
State A
State B
State C

50.0
30.0
20.0

X3
State G
State H
State J

31.9
40.7
27.5

X4
State L
State M
State N

18.0
54.5
27.5

X2
State D
State E
State F

10.0
60.0
30.0

X5
State Q
State R
State S

38.8
33.7
27.5  

 
(a)        (b) 

Figure 1. A graphical model consisting of five nodes and five directed edges (a) and a fully 
parameterized Bayesian network that corresponds to the graphical model (b). 

In a fully parameterized network, all of the possible states of each node must be defined. 
Bayesian networks are generally constructed assuming that all random variables are discrete. 
Each node in a Bayesian network may take two or more possible states that represent a mutually 
exclusive and collectively exhaustive set of possible states for that node. Parentless nodes are 
defined by a marginal probability table that describes the probability of that node being in each 
possible state. Child nodes are defined by a conditional probability table that describes the 
probability the child is in each of its possible states given each of the possible states of each 
parent node. In Figure 1(b), which shows a fully parameterized Bayesian network, each node 
may take three possible states. Nodes X1 and X2 have no parents, so are parameterized using 
marginal probability tables. Nodes X3, X4, and X5 are parameterized using conditional 
probability tables. The probabilities in a network can be based on expert judgment, bio-physical 
and engineering model simulation outputs, or data from either the system of interest or similar 
systems. The “belief bars” in Figure 1(b) show the probability that each node is in each possible 
state. For example, node X1 has a 50-percent chance of being in state A, a 30-percent chance of 
being in state B, and a 20-percent chance of being in state C. Node X3 has a 31.9-percent chance 
of being in state G, a 40.7-percent chance of being in state H, and a 27.5-percent chance of being 
in state J given the probabilities for its parent nodes (X1 and X2). 
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There are basically two types of dependence relationships in a DAG: Direct dependence and 
conditional independence. A node (the child) is directly dependent upon another node (the 
parent) if there is a directed edge linking the parent directly to the child. The probability 
distribution of a child node may be determined by knowing only the states of its parent nodes. A 
node is conditionally independent of another node if, given information about all mediating 
nodes, it is unaffected by knowledge of the other node. While representation of dependence and 
independence relationships is a useful feature for communication, the greater value in Bayesian 
networks is in their ability to perform statistical inference. The computational demands of 
inference about a joint probability distribution can be extremely high. These demands are 
directly related to the number of random variables and states in a network as well as the overall 
structure of the network (in other words, how the nodes are connected to one another) (Koller 
and Friedman 2009). It is only relatively recently, within the past 25 years, that algorithms have 
been developed to solve these problems efficiently.  

Statistical inference. Statistical inference is probabilistic reasoning about the modeled 
system. Statistical inference can be classified as either predictive (causal) or diagnostic 
(evidential) (Kjaerulff and Madsen 2008, Koller and Friedman 2009). In predictive applications, 
the objective is to reason from cause to effect and so assess the probability of a particular 
outcome given knowledge about the state of ancestral nodes. The ability to solve predictive 
inference problems is particularly useful when dealing with complex systems about which 
understanding of causal effects is limited or direct observations of system states are difficult. In 
such cases, the state of the system must be inferred from uncertain information about site 
conditions. Diagnostic inference is reasoning from effects to causes and the objective is to 
predict the probability that an ancestor node is in a particular state given evidence about the 
descendent node. When there are multiple possible causes for an effect, this form of reasoning 
can be used to predict the probabilities of potential causes, a process known as explaining away. 
The ability to explain away the causes of an effect is unique to Bayesian networks and is made 
possible by the presence of converging connections (Kjaerulff and Madsen 2008).  

Inference is accomplished by applying information to the model in the form of hard evidence or 
soft evidence and updating probabilities in the network to obtain posterior probabilities using 
Bayes rule. The posterior probability is simply the probability that one node in the network is in 
a particular state given evidence about one or more other nodes in the network. Hard evidence is 
knowledge that a particular variable is in a particular state and that the probability of being in all 
of the other possible states is zero. Entering hard evidence is called instantiation. Soft evidence is 
uncertain knowledge about a variable. If soft evidence is available about a variable, the 
probabilities that are coded in that variable node can be updated by entering a finding in the form 
of a probability distribution. Once a finding has been entered in a network, all probabilities in the 
network are updated using Bayes rule. The ability to perform mathematically exact calculations 
of the probabilities efficiently is one of the primary advantages of Bayesian networks.  

Figure 2(a) demonstrates predictive inference by instantiation of node X2. Node X2 is 
instantiated with hard evidence to indicate perfect information that this random variable is in 
state D. Instantiation affects the degree of belief about the state of nodes X3, X4, and X5. For 
example, the prior probability that node X4 is in state L is 18 percent (see Figure 1(b)). The 
model uses the information that node X2 is in state D to update the probability that node X4 is in 
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state L from 18 percent to 75 percent. With the exception of probabilities in node X1, all other 
probabilities in the network have also been updated. Figure 2(b) demonstrates diagnostic 
inference. Perfect knowledge about the state of node X5 enables users to update beliefs about the 
state of other nodes in the network. For example, Figure 2(b) shows that if node X5 is in state S, 
the probability that node X1 is in state C increases from 20 percent to 48.3 percent and the 
probability that node X3 is in state J increases from 27.5 percent to 61 percent.  

X1
State A
State B
State C

50.0
30.0
20.0

X3
State G
State H
State J

60.5
24.5
15.0

X4
State L
State M
State N

75.0
20.0
5.00

X2
State D
State E
State F

 100
   0
   0

X5
State Q
State R
State S

48.6
29.0
22.4  

X1
State A
State B
State C

28.5
23.2
48.3

X3
State G
State H
State J

14.7
24.3
61.0

X4
State L
State M
State N

16.6
50.7
32.7

X2
State D
State E
State F

8.14
52.2
39.7

X5
State Q
State R
State S

   0
   0

 100  
 

(a)       (b) 

Figure 2. Instantiation of node X2 for predictive inference (a) and instantiation of node X5 for diagnostic 
inference (b). 

CONSTRUCTION OF BAYESIAN NETWORKS: Bayesian networks are constructed by 
structuring the network and populating marginal or conditional probability tables. There are two 
approaches to constructing Bayesian networks, although many applications integrate the two 
(Darwiche 2009). The first, which is largely subjective, is called knowledge representation. 
Using this approach, the modeler uses his knowledge about cause and effect within the system or 
the knowledge of others to structure the graphical model and assess the probabilities. 
Alternatively, the modeler can synthesize some other type of formal knowledge, such as 
blueprints, flow charts, or diagrams. The second approach to constructing Bayesian networks is 
called machine learning or learning from data. In this approach, an artificial neural network is 
derived from data. Both the structure of a network and the probability tables can be learned from 
data using one of several available algorithms. It is very common for networks to be structured 
using a knowledge representation approach and then to obtain conditional probability tables from 
data or model outputs.  

Best Practices for Constructing Bayesian Network Models. Network structures should 
be developed using a causal reasoning approach in which parent nodes represent causes and child 
nodes represent effects (Koller and Friedman 2009). Like all models, Bayesian networks are 
simplifications of real systems. The simplest possible network structure should be used (Barton 
et al. 2008). In an effort to keep network structures as simple as possible, Koller and Friedman 
(2009) suggest including only those nodes that can be observed or that the modeler may want to 
query. However, each node should have at least two parents or at least two children. Exceptions 
to this rule exist, as in the case of a mediating variable designed to transform one node for 
inference about a downstream node. The number of dependencies represented in the network 
should be minimized by eliminating edges between nodes if the effect of one node on another is 
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thought to be small (Marcot et al. 2006c). Marcot et al. (2006c) also recommend limiting the 
number of parent nodes to three to minimize the complexity of conditional probability tables. 
Large numbers of parents (more than three or four) can cause conditional probability tables to 
become very complex, particularly if there are a large number of node states. The number of 
undirected loops in the DAG should be minimized to reduce computational requirements. An 
undirected loop (not a directed cycle) occurs when there is a pathway leading from a parent 
through a child and back to the parent via an alternate route (which may go against the direction 
of the edges). 

Best practices should also be considered with respect to the discretization of variable nodes. It is 
a requirement of the method that the set of possible states for each node are mutually exclusive 
and collectively exhaustive. Mutual exclusivity means that if the state of a random variable is 
known precisely, there would be no ambiguity in assigning it to one of the possible states defined 
for that variable. This should not be a problem if nodes are “well-specified,” meaning that the 
quantities represented by a node pass a clarity test: “Could a clairvoyant say unambiguously 
whether the event will or had occurred, or could he give the exact numerical value of the 
quantity?” (Morgan and Henrion 1990, Howard and Matheson 1984). A collectively exhaustive 
set of possible states simply means that, for any state of the random variable that might be 
observed in nature, there is a node state that corresponds to that state in the model. The level of 
resolution in each node is important because too few states can lead to errors in inference and too 
many states can lead to high levels of computational effort and complex conditional probability 
tables. It is best to choose variable states that are meaningful in terms of the problem under 
consideration. For example, Marcot et al. (2006c) suggest that, when modeling ecological 
systems, the modeler include only ecologically significant states. 

INFLUENCE DIAGRAMS: Bayesian networks have been adapted for decision modeling. 
While a Bayesian network is designed for reasoning under uncertainty, an influence diagram is 
designed for reasoning about decision making under uncertainty (Kjaerulff and Madsen 2008). In 
addition to the customary chance nodes of a Bayesian network, an influence diagram includes a 
decision node that identifies the decision alternatives under consideration and a utility or value 
node that describes the outcomes, which are expressed as some mathematical function of value 
node parents. Figure 3 is an influence diagram consisting of five chance nodes, one decision 
node, and one utility node. Decision nodes and utility nodes in influence diagrams are 
fundamentally different from chance nodes that represent random variables. Chance nodes are 
defined by marginal or conditional probability tables, while decision nodes are defined by a list 
of alternatives, and value nodes are defined by a table of outcome values conditional on the state 
of its parents. It is possible to include multiple decision nodes and multiple utility nodes in an 
influence diagram. Influence diagrams differ from Bayesian networks in one other respect. When 
constructing influence diagrams, the links among nodes must represent both causality and 
probabilistic dependence (Kjaerulff and Madsen 2008, p. 24).  
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Figure 3. An influence diagram 
consisting of five chance nodes, 
one decision node, and one utility 
node.  

CONCLUSION: There are many advantages to using Bayesian networks. Project conditions 
that might motivate the use of Bayesian networks as a decision modeling approach include the 
need for a coherent and mathematically sound handling of uncertainty, an intuitive and compact 
representation of cause-and-effect relationships, a representation of dependence and conditional 
independence relationships, and diagnostic statistical inference (Kjaerulff and Madsen 2008). 
Other project conditions that might motivate the use of Bayesian networks include:  

• The decision problem transcends multiple disciplines and information or models originating 
from multiple disciplines must be integrated into one common representation of a system.  

• The system being represented is complex, and multiple models that are functionally 
incompatible must be integrated to represent the system. 

• Objective and subjective knowledge must be integrated, or expert knowledge is being 
incorporated into the decision-making process. 

• One has data about conditions within a system, but the level of understanding is insufficient 
to explain the relationships among the observable quantities in the system.  

• A recurring decision will be updated as new information emerges (adaptive management). 

It is also important to recognize when Bayesian networks might not be the best approach to 
solving a problem. Bayesian networks should not be used when processes can be fully explained 
mechanistically using first order principles or as a substitute for mechanistic models, the 
variables and events of the problem domain cannot be well-defined, or when there is no 
uncertainty. None of these conditions seem to apply to most navigation dredging decision 
problems. 

POINTS OF CONTACT: Contact the authors, Dr. Martin T. Schultz (601-634-4313, 
Martin.T.Schultz@usace.army.mil), of the Risk Assessment Branch (RAB), Engineering 
Processes and Effects Division (EPED), Environmental Laboratory (EL), Mr. Thomas D. 
Borrowman (601-634-4048, Thomas.D.Borrowman@usace.army.mil) of the Environmental 
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Engineering Branch (EEB), EPED, EL, or the manager of the Dredging Operations and 
Environmental Research Program, Dr. Todd S. Bridges (601-634-3626, 
Todd.S.Bridges@usace.army.mil). This technical note should be cited as follows:  

Schultz, M. T., and T. D. Borrowman, 2011. An introduction to using Bayesian 
networks to model dredging decisions. DOER Technical Notes Collection (ERDC 
TN-DOER-R18). Vicksburg, MS: U.S. Army Engineer Research and 
Development Center. www.wes.army.mil/el/dots/doer  
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